
ESP-TOUCH
User Guide

Version 1.1
Copyright © 2016

About This Guide
This document introduces ESP-TOUCH protocol and the relevant application with the
structure as below.

Release Notes

Chapter Title Subject

Chapter 1 Technology Overview Provides technical principles of ESP-TOUCH.

Chapter 2 ESP-TOUCH Operations Provides instructions on how to use ESP-TOUCH.

Chapter 3 API Development Provides information on APIs.

Chapter 4 Performance Analysis Introduces ESP-TOUCH error correcting arithmetic and provides
performance analysis.

Date Version Release notes

2015.12 V1.0 First release.

2016.04 V1.1 Updated Chapter 2 & 3.

Table of Contents
1. Technology Overview 1 ..

2. ESP-TOUCH Operations 3 ..
2.1. ESP-TOUCH Functional Overview	 3
..
2.2. ESP-TOUCH Operation Process	 3
...

3. API Development 4 ...
3.1. smartconfig_start	 4
..
3.2. smartconfig_stop	 6
..
3.3. smartconfig_set_type	 7
..
3.4. Struct	 7
...

4. ESP-TOUCH Performance Analysis 9..

�

1. Technology Overview

1. Technology Overview
Espressif’s ESP-TOUCH protocol implements Smart Config technology to help users
connect ESP8266EX-embedded devices to a Wi-Fi network through simple configuration
on a smartphone.

!

Figure 1-1 Typical ESP-TOUCH Application

Since the ESP8266 device (hereinafter referred to as the device) is not connected to the
network at the beginning, the ESP-TOUCH application cannot send the information to the
device directly. With ESP-TOUCH communication protocol, a Wi-Fi enabled device such as
a smartphone sends UDP packets to the Wi-Fi Access Point (AP), and encodes the SSID
and password into the Length field of a sequence of UDP packets where the ESP8266
device can reach and decode the information.

ESP-
TOUCH

APP

ESP
8266

SSID an
d pas

sw
ord

SSID and password

Espressif �/111 2016.04

�

1. Technology Overview

!

Figure 1-2 Data Packet Structure

DA SA Length LLC DATASNAP FCS

Contains SSID and key
information which

ESP8266 device can reach

6 6 2 3 Variable5 4

Espressif �/112 2016.04

�

2. ESP-TOUCH Operations

2. ESP-TOUCH Operations
2.1. ESP-TOUCH Functional Overview

The ESP8266 RTOS SDK and NONOS SDK both support ESP-TOUCH.
The SDKs also integrate AIRKISS protocol developed by Wechat so that users can
configure the device either via ESP-TOUCH App or on the Wechat client-side.

2.2. ESP-TOUCH Operation Process
1. Prepare a device that supports ESP-TOUCH, and enable its Smart Config function.
2. Connect your smartphone to the router.
3. Open ESP-TOUCH App installed on the smartphone.
4. Input the router’s SSID and password (you do not need to input password if the router is

not encrypted) to connect the device.

Note:

Users can download ESP-TOUCH App source code at: https://github.com/espressifAPP.

Notes:

• It only takes the device a few seconds to connect to the router if the two are close. It will
take longer to establish the connection with greater distance.

• Make sure the router is powered on before configuration, or the device is not able to scan
the APs around.

• Sequence of data transmitted from ESP-TOUCH App has an overtime monitoring
mechanism. If the device cannot connect to the router within a specified period of time, the
App will return the configuration failure message (please refer to the App source code).
Similarly, the time period the device takes to obtain the SSID and password will be
calculated. If the device cannot obtain SSID and password within a certain period of time,
the device will start the next round of Smart Config process. Users can define the overtime
settings through esptouch_set_timeout(uint8 time_s).

• Sniffer mode should be enabled during the Smart Config process. Station and soft-AP
modes of the device should be disabled. Other APIs shouldn’t be called.

• After the configuration process is completed, the transmitter side will get IP of the device,
and the device will return the IP of the transmitter side. If the user wants to customize the
information exchange between the transmitter side and the device, IP information can be
explored.

• If the AP isolation mode is enabled for the router, the App may not get the configuration
success message even if the connection has been established.

• Users can configure multiple devices to connect to the same router simultaneously. Users
can choose for multiple returned messages on the App.

Espressif �/113 2016.04

https://github.com/espressifAPP
https://github.com/espressif/ESP8266_RTOS_SDK

�

3. API Development

3. API Development
Users can call the following APIs to realize ESP-TOUCH configuration. Please use the latest
App and firmware. The SDKs provide ESP-TOUCH demo for your reference.

3.1. smartconfig_start
Function:
Configure the device and connect it to the AP.

Defintion:
bool smartconfig_start(sc_callback_t cb, uint8 log)

Parameters:

⚠ Notice:

• This API can be called in the Station mode only.

• Call smartconfig_stop to stop the Smart Config process first before repeating the
process or calling other APIs.

sc_callback_t cb

Smart Config callback; executed when smart-config status changes;

parameter status of this callback shows the status of Smart Config:

• When the status is SC_STATUS_GETTING_SSID_PSWD, parameter

void *pdata is a pointer of sc_type, meaning Smart Config type:
AirKiss or ESP-TOUCH.

• When the status is SC_STATUS_LINK, parameter void *pdata is a
pointer of struct station_config.

• When the status is SC_STATUS_LINK_OVER, parameter void
*pdata is a pointer of mobile IP address (4 bytes). It applies to ESP-
TOUCH configuration process only, otherwise parameter void
*pdata will be NULL.

• When the status is others, parameter void *pdata is NULL.

Espressif �/114 2016.04

�

3. API Development

Returned Value:

Example:
void ICACHE_FLASH_ATTR

smartconfig_done(sc_status status, void *pdata)

{

 switch(status) {

 case SC_STATUS_WAIT:

 os_printf("SC_STATUS_WAIT\n");

 break;

 case SC_STATUS_FIND_CHANNEL:

 os_printf("SC_STATUS_FIND_CHANNEL\n");

 break;

 case SC_STATUS_GETTING_SSID_PSWD:

 os_printf("SC_STATUS_GETTING_SSID_PSWD\n");

 sc_type *type = pdata;

 if (*type == SC_TYPE_ESPTOUCH) {

 os_printf("SC_TYPE:SC_TYPE_ESPTOUCH\n");

 } else {

 os_printf("SC_TYPE:SC_TYPE_AIRKISS\n");

 }

 break;

uint8 log

1 indicates connection process will be printed out via UART interface.
Otherwise only the connection result will be printed.

For example,

• smartconfig_start(smartconfig_done,1): DEBUG information

during the connection process will be printed out via serial port.

• smartconfig_start(smartconfig_done): DEBUG information

will not be printed out, only the connection result will be printed.

TRUE Succeed

FALSE Failed

Espressif �/115 2016.04

�

3. API Development

 case SC_STATUS_LINK:

 os_printf("SC_STATUS_LINK\n");

 struct station_config *sta_conf = pdata;

 wifi_station_set_config(sta_conf);

 wifi_station_disconnect();

 wifi_station_connect();

 break;

 case SC_STATUS_LINK_OVER:

 os_printf("SC_STATUS_LINK_OVER\n");

 if (pdata != NULL) {

 uint8 phone_ip[4] = {0};

 memcpy(phone_ip, (uint8*)pdata, 4);

 os_printf("Phone ip: %d.%d.%d.%d
\n",phone_ip[0],phone_ip[1],phone_ip[2],phone_ip[3]);

 }

 smartconfig_stop();

 break;

 }

}

smartconfig_start(smartconfig_done);

3.2. smartconfig_stop
Function:
Stop Smart Config process, and free the buffer taken by smartconfig_start.

Defintion:
bool smartconfig_stop(void)

Parameters:
Null
Returned Value:

Note:

After the connection has been established, users can call this API to free the memory taken by
smartconfig_start.

TRUE Succeed

Espressif �/116 2016.04

�

3. API Development

3.3. smartconfig_set_type
Function:
Set the protocol type of smartconfig_start mode.

Definition:
bool smartconfig_set_type(sc_type type)

Parameters:
 typedef enum {

 SC_TYPE_ESPTOUCH = 0,

 SC_TYPE_AIRKISS,

 SC_TYPE_ESPTOUCH_AIRKISS,

 } sc_type;

Returned Value:

3.4. Struct
typedef enum {

SC_STATUS_WAIT = 0,

SC_STATUS_FIND_CHANNEL = 0,

SC_STATUS_GETTING_SSID_PSWD,

SC_STATUS_LINK,

SC_STATUS_LINK_OVER,

} sc_status;

FALSE Failed

Note:

Please call this API before smartconfig_start

TRUE Succeed

FALSE Failed

⚠ Notice:

SC_STATUS_FIND_CHANNEL status: Users may open the App for configuration only when the
device is scanning the channels.

Espressif �/117 2016.04

�

3. API Development

typedef enum {

SC_TYPE_ESPTOUCH = 0,

SC_TYPE_AIRKISS,

SC_TYPE_ESPTOUCH_AIRKISS,

} sc_type;

Espressif �/118 2016.04

�

4. ESP-TOUCH Performance Analysis

4. ESP-TOUCH Performance
Analysis

The mechanism implied in ESP-TOUCH communication technology can be understood as
a specific error ratio over a single communication channel, the value of which varies with
different bandwidth. The packet error ratio is 0 ~ 5% when the bandwidth is 20 MHz, and is
0 ~ 17% when the bandwidth reaches 40 MHz. Supposing that the maximum length of
data to be transferred is 104 bytes, if error correcting arithmetic is not applied, it will be
really difficult for these data to be transferred within limited times.
By adopting cumulative error correcting arithmetic, transmission can be completed within
limited times. The theoretical basis of cumulative error correcting arithmetic is that, during
multi-round data transmission process, bit error probability of a same data bit is very low,
therefore, cumulative results of multi-round data transmission can be analyzed. The correct
value of one bit error can be very likely to be found at other rounds, thus data transmission
within limited times can be guaranteed. The success rate of data transmission can be

generalized as ! (! : packet success rate, ! : round of transmission, ! : length
of transmitted data).
Assuming that the length of data to be transmitted is 104 bytes and 72 bytes, the success
rate can reach 0.95 when the bandwidth is 20 MHz, and 0.83 when the bandwidth is 40
MHz.
Tables below show probability of data transmission success rate and transmission time
when cumulative error correcting arithmetic is adopted.

lkp]]1[1[−− p k l

Table 4-1. ESP-TOUCH Error Correcting Analysis (20 MHz Bandwidth)

Round
Length: 104 Bytes Length: 72 Bytes

Transmission Time
(s) Success Rate Transmission Time

(s) Success Rate

1 4.68 0.0048 3.24 0.0249

2 9.36 0.771 6.48 0.835

3 14.04 0.987 9.72 0.991

4 18.72 0.9994 12.9 0.9996

5 23.40 0.99997 16.2 0.99998

6 28.08 0.999998 19.4 0.99999

Espressif �/119 2016.04

�

4. ESP-TOUCH Performance Analysis

Table 4-2 ESP-TOUCH Error Correcting Analysis (40 MHz Bandwidth)

Round
Length: 104 Bytes Length: 72 Bytes

Transmission Time
(s) Success Rate Transmission Time

(s) Success Rate

1 4.68 3.84e-9 3.24 1.49e-6

2 9.36 0.0474 6.48 0.121

3 14.04 0.599 9.72 0.701

4 18.72 0.917 12.9 0.942

5 23.40 0.985 16.2 0.989

6 28.08 0.997 19.4 0.998

Espressif � /1110 2016.04

�

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2016 Espressif Inc. All rights reserved.

Espressif IOT Team

www.espressif.com

�

http://www.espressif.com

