ESP8266
Application Note

Firmware Download Protocol

Version 1.0
Copyright © 2016

About This Guide

This document introduces ESP8266 firmware download protocol with a structure as
follows.

Introduction to the hardware preparations and procedure for

Chapter 1 Overview downloading firmware.

Introduction to the data transmission format when downloading

Chapter 2 Transmission Protocol firmware into flash.

Chapter 3 Firmware Image Format Introduction to the firmware image format in flash.

Appendix | Programming Examples Related programming examples.

Release Notes

2016.05 V1.0 First release.

Related Documents

Please download related documents via the following links.
Official website: http.//www.espressif.com/support/download/documents
Official BBS: http.//bbs.espressif.com/viewtopic.php?f=67&t=225

ESP8266 Hardware Description

HDK Guides
ESP-WROOM-02 Datasheet

ESP8266 SDK Getting Started Guide

SDK Guides
ESP8266 Non-OS SDK AT Instruction Set

http://www.espressif.com/support/download/documents
http://bbs.espressif.com/viewtopic.php?f=67&t=225

Table of Contents

B O V7Y V1= 1
1.1, Hardware Preparations ... 1
1110 Hardware SEHNGSooiiiiieeee e e r e e e 1

B I 2 o F= T NV =T 7o) a1 1Yo 1o o 1

B I Z N B L0 111V o1 [0 7= T [N = e YoT=Y o 115 [< 2

B L= 1T 0 a1 EST< (0] TN d 0 (0 Yo | 3
2 IR == T (= Al o (== T 1= TR 3
P = Vol (=T g = To o | PP PPPPPRRPPPRIN 4
. Firmware Image FOrMAL...... .o e e e 5
FaY o] 01T gl [Qe = o] o] = 6
N PO o o T=Yo1 <10 [o DR 6
R =Y = =YY { =T o (TR 6

I.IIl. References

1. Overview
1. Overview

1.1. Hardware Preparations
When ESP8266 is in UART download mode, you can download firmware from external
MCU to ESP8266.

1.1.1. Hardware Settings

The hardware settings are shown in Table 1-1.

Table 1-1. Hardware Settings
ltem Value

GPIO0 and GPIO15: pulled down

UART download mode)
GPIO2: pulled high

Baud rate Auto-bauds
Data bit 8
Stop bit 1
Parity bit None
Flow control Disabled

1.1.2. Hardware Connection

The hardware connection is shown in Figure 1-1.

McU ESP8266
RXD

Download Protocol TXD |”“9Fr)rgfc\)/ég|load
GND

Figure 1-1. Hardware Connection

Espressif 1/9 2016.05

1.2. Download Procedure

o)

\

Synchronization

Yes

v

Erase data

\

No (Timeout) Transmit data

Yes
v

Transmit finish frame

No (Failure)

>

y

A

Con

Figure 1-2. Download Procedure

e Synchronization: transmit sync frame to synchronize the baud rate.

1. Overview

* FErase data: erase the related flash sectors according to the size and address of the

firmware to download.

¢ Transmit data: encapsulate the firmware into multiple frames and transmit them to

ESP8266.

e Transmit finish frame: transmit download finish frame to ESP8266.

Espressif 2/9

2016.05

2. Transmission Protocol

N &2

Transmission Protocol

The transmission protocol uses SLIP framing.

e FEach packet begin and end with 9xC0.

e All occurrences of 9xCO and @xDB inside the packet are replaced with @xDB ©xDC
and OxDB 0OxDD, respectively.

¢ Inside the frame, the packet consists of a header and a variable length body as
shown in Figure 2-1.

o All multi-byte fields are little-endian.

byte 0 1 2 3 4 5 6 7 8 9 A B C D E F

Oh Header
Th Bodly
Figure 2-1. Packet Format
[Note:

Data size in header is the length of packet body before being replaced.

2.1. Packet Header

The format of packet header is shown in Table 2-1.

Table 2-1. Packet Header Format

Data type Byte Request Response
Type 0 Always 0x00. Always 0x01.

Command 1 Operation code. Please refer to Table 2-2 for details.

Data size 2~3 The size of packet body.

XOR checksum of payload (the firmware data
Checksum/ stored after the 16th byte of the packet body).
4~7) Response data.

Response For checksum algorithm, please refer to

Appendix - Programming Examples.

Body 8~n Depends on operation
Status flag, success (0)
Status 8 - or failure (1).
Error 9) Success (null) or failure

(error code).

Espressif 3/9 2016.05

https://en.wikipedia.org/wiki/SLIP

02

2. Transmission Protocol

Table 2-2. Operation Code

Flash DownlLoad Start

Erase the data in the flash.

¢ Word0: the number of erasing flash sectors. Each
sector is 4096 bytes.

e Word1: the number of transmitting packet.

o Word2: packet size, e.g., 0x400.

e Word3: offset address.

Note:

For the sample codes of erasing data, please refer to
Appendix - Programming Examples.

03

File Packet Send

Transmit data.
e WordO: the size of writing data (filled with 0x400).

e Word1: the sequence number of transmitting
packet.

e Word2: 0x0
e Word3: 0x0

04

Flash DownlLoad Stop

Stop transmitting data.

08

Sync Frame Send

sync_frame[36] = { 0x07, 0x07, 0x12,
0x20,

Ox55, Ox55, Ox55, Ox55, Ox55, Ox55,
0x55, 0x55,

0x55, Ox55, Ox55, Ox55, Ox55, Ox55,
0x55, 0x55,

0x55, Ox55, 0x55, Ox55, Ox55, 0x55,
0x55, 0x55,

0x55, Ox55, Ox55, Ox55, 0Ox55, 0Ox55,
0x55, Ox55 };

2.2. Packet Body

The packet body format is shown in Figure 2-2.

Espressif

Figure 2-2. Packet Body Format

The first 16 bytes (WordO~Word3) is the description of packet body, which is different when
executing different commands.

4/9

2016.05

w &

3. Firmware Image Format

Firmware Image Format

Espressif

The firmware consists of a file header, a variable number of data blocks (the size of blocks
may be different) as shown in Figure 3-1. Multi-byte fields are little-endian.

File Header

Figure 3-1. Firmware Image Format

The format of file header is shown in Table 3-1.

Table 3-1. Firmware Format Description

0 Magic Code

The value is always OXE9.

1 Block Number

The number of blocks.

2 SPI Mode

The SPI working mode.
e 0x00: QIO mode
e 0x01: QOut mode
e 0x02: DIO mode
e 0x03: DOut mode

3 SPI Flash Info

SPI flash size and frequency.
High 4 bits: 0x0 = 512 kB; 0x1 = 256 kB; 0x2 = 1 MB; 0x3 = 2 MB;
0x4 =4 MB

Low 4 bits: 0x0 = 40 MHz; 0x1 = 26 MHz; 0x2 = 20 MHz; OxF = 80
MHz

4~7 Entry Address

CPU entry address.

5/9 2016.05

| Appendix - Examples

Appendix - Examples

checksum

uint32_t espcomm_calc_checksum(unsigned char *data, uintl6_t
data_size)

{
uintlé_t cnt;
uint32 t result;
result = OXEF;
for(cnt = 0; cnt < data_size; cnt++)
{
result "= data[cnt];

}

return result;

erase flash

#define BLOCKSIZE FLASH 0x400
#define FLASH _DOWNLOAD BEGIN 0x02
uint32 flash _packet[];

//uint32_t size:firmware real size, wuint32_t address: download
offset address

int erase_flash(uint32_t size, uint32_t address)
{

const int sector_size = 4096;

const int sectors_per_block 16;

const int first sector_index address / sector_size;

const int total_sector_count ((size % sector_size) == 0) ?

(size / sector_size) : (size /
sector_size + 1);

const int max_head_sector_count = sectors_per_block -
(first_sector_index % sectors per_block);

const int head sector_count = (max_head_sector_count >
total_sector_count) ?

Espressif

6/9 2016.05

| Appendix - Examples

total_sector_count
max_head_sector_count;

// SPIEraseArea function in the esp8266 ROM has a bug which causes

extra area to be erased.

// 1If the address range to be erased crosses the block boundary,
// then extra head_sector_count sectors are erased.

// If the address range doesn't cross the block boundary,

// then extra total sector_count sectors are erased.

const int adjusted _sector_count = (total_sector_count > 2 *
head sector_count) ?

(total_sector_count - head_sector_count):

(total_sector_count + 1) / 2;
erase_size = adjusted sector_count * sector_size;
flash_packet[0] = erase_size;
flash_packet[1l] = (size + BLOCKSIZE FLASH - 1) / BLOCKSIZE FLASH
flash_packet[2] BLOCKSIZE_FLASH;

flash_packet[3]

espcomm_send_command (FLASH _DOWNLOAD BEGIN, (unsigned char¥*)
&flash_packet, 16);

}

address;

’

Espressif

References

(1) igrr/esptool-ck url: https.//github.com/igrr/esptool-ck

(2) themadinventor/esptool url: https.//qgithub.com/themadinventor/esptool

7/9

2016.05

https://github.com/igrr/esptool-ck
https://github.com/themadinventor/esptool

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without
notice.

THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.

Espressif IOT Team

www.espressif.com Copyright © 2016 Espressif Inc. All rights reserved.

http://www.espressif.com

