

ESP32-C3 Wireless Adventure
A Comprehensive Guide to IoT

Espressif Systems

June 12, 2023

Contents

I Preparation 1

1 Introduction to IoT 2
1.1 Architecture of IoT . 2
1.2 IoT Application in Smart Homes . 5

2 Introduction and Practice of IoT Projects 7
2.1 Introduction to Typical IoT Projects . 7

2.1.1 Basic Modules for Common IoT Devices 7
2.1.2 Basic Modules of Client Applications 8
2.1.3 Introduction to Common IoT Cloud Platforms 9

2.2 Practice: Smart Light Project . 10
2.2.1 Project Structure . 11
2.2.2 Project Functions . 11
2.2.3 Hardware Preparation . 12
2.2.4 Development Process . 14

2.3 Summary . 15

3 Introduction to ESP RainMaker 16
3.1 What is ESP RainMaker? . 17
3.2 The Implementation of ESP RainMaker . 18

3.2.1 Claiming Service . 19
3.2.2 RainMaker Agent . 19
3.2.3 Cloud Backend . 20
3.2.4 RainMaker Client . 21

3.3 Practice: Key Points for Developing with ESP RainMaker 22
3.4 Features of ESP RainMaker . 23

3.4.1 User Management . 23
3.4.2 End User Features . 24
3.4.3 Admin Features . 25

3.5 Summary . 26

4 Setting Up Development Environment 27
4.1 ESP-IDF Overview . 27

4.1.1 ESP-IDF Versions . 28

2

4.1.2 ESP-IDF Git Workflow . 29
4.1.3 Choosing a Suitable Version . 30
4.1.4 Overview of ESP-IDF SDK Directory . 30

4.2 Setting Up ESP-IDF Development Environment 34
4.2.1 Setting up ESP-IDF Development Environment on Linux 34
4.2.2 Setting up ESP-IDF Development Environment on Windows 36
4.2.3 Setting up ESP-IDF Development Environment on Mac 41
4.2.4 Installing VS Code . 42
4.2.5 Introduction to Third-Party Development Environments 42

4.3 ESP-IDF Compilation System . 43
4.3.1 Basic Concepts of Compilation System 43
4.3.2 Project File Structure . 43
4.3.3 Default Build Rules of the Compilation System 46
4.3.4 Introduction to the Compilation Script 47
4.3.5 Introduction to Common Commands 48

4.4 Practice: Compiling Example Program “Blink” 49
4.4.1 Example Analysis . 49
4.4.2 Compiling the Blink Program . 52
4.4.3 Flashing the Blink Program . 55
4.4.4 Serial Port Log Analysis of the Blink Program 56

4.5 Summary . 59

II Hardware and Driver Development 60

5 Hardware Design of Smart Light Products based on ESP32-C3 61
5.1 Features and Composition of Smart Light Products 61
5.2 Hardware Design of ESP32-C3 Core System 64

5.2.1 Power Supply . 68
5.2.2 Power-on Sequence and System Reset 68
5.2.3 SPI Flash . 69
5.2.4 Clock Source . 69
5.2.5 RF and Antenna . 70
5.2.6 Strapping Pins . 73
5.2.7 GPIO and PWM Controller . 73

5.3 Practice: Building a Smart Light System with ESP32-C3 74
5.3.1 Selecting Modules . 74
5.3.2 Configuring GPIOs of PWM Signals . 76
5.3.3 Downloading Firmware and Debugging Interface 76

5.3.4 Guidelines for RF Design . 78
5.3.5 Guidelines for Power Supply Design 80

5.4 Summary . 80

6 Driver Development 81
6.1 Driver Development Process . 81
6.2 ESP32-C3 Peripheral Applications . 82
6.3 LED Driver Basics . 83

6.3.1 Color Spaces . 83
6.3.2 LED Driver . 88
6.3.3 LED Dimming . 88
6.3.4 Introduction to PWM . 89

6.4 LED Dimming Driver Development . 90
6.4.1 Non-Volatile Storage (NVS) . 91
6.4.2 LED PWM Controller (LEDC) . 92
6.4.3 LED PWM Programming . 94

6.5 Practice: Adding Drivers to Smart Light Project 97
6.5.1 Button Driver . 97
6.5.2 LED Dimming Driver . 98

6.6 Summary . 102

III Wireless Communication and Control 103

7 Wi-Fi Configuration and Connection 104
7.1 Basics of Wi-Fi . 104

7.1.1 Introduction to Wi-Fi . 104
7.1.2 Evolution of IEEE 802.11 . 104
7.1.3 Wi-Fi Concepts . 105
7.1.4 Wi-Fi Connection . 108

7.2 Basics of Bluetooth . 115
7.2.1 Introduction to Bluetooth . 116
7.2.2 Bluetooth Concepts . 117
7.2.3 Bluetooth Connection . 120

7.3 Wi-Fi Network Configuration . 124
7.3.1 Wi-Fi Network Configuration Guide . 124
7.3.2 SoftAP . 125
7.3.3 SmartConfig . 125
7.3.4 Bluetooth . 128
7.3.5 Other Methods . 130

7.4 Wi-Fi Programming . 132
7.4.1 Wi-Fi Components in ESP-IDF . 132
7.4.2 Exercise: Wi-Fi Connection . 134
7.4.3 Exercise: Smart Wi-Fi Connection . 138

7.5 Practice: Wi-Fi Configuration in Smart Light Project 149
7.5.1 Wi-Fi Connection in Smart Light Project 149
7.5.2 Smart Wi-Fi Configuration . 150

7.6 Summary . 151

8 Local Control 152
8.1 Introduction to Local Control . 152

8.1.1 Application of Local Control . 154
8.1.2 Advantages of Local Control . 154
8.1.3 Discovering Controlled Devices through Smartphones 154
8.1.4 Data Communication Between Smartphones and Devices 155

8.2 Common Local Discovery Methods . 155
8.2.1 Broadcast . 156
8.2.2 Multicast . 162
8.2.3 Comparison Between Broadcast and Multicast 169
8.2.4 Multicast Application Protocol mDNS for Local Discovery 169

8.3 Common Communication Protocols for Local Data 172
8.3.1 Transmission Control Protocol (TCP) 172
8.3.2 HyperText Transfer Protocol (HTTP) 178
8.3.3 User Datagram Protocol (UDP) . 182
8.3.4 Constrained Application Protocol (CoAP) 185
8.3.5 Bluetooth Protocol . 190
8.3.6 Summary of Data Communication Protocols 196

8.4 Guarantee of Data Security . 198
8.4.1 Introduction to Transport Layer Security (TLS) 200
8.4.2 Introduction to Datagram Transport Layer Security (DTLS) 206

8.5 Practice: Local Control in Smart Light Project 210
8.5.1 Creating a Wi-Fi-based Local Control Server 210
8.5.2 Verifying Local Control Functionality using Scripts 214
8.5.3 Creating a Bluetooth-based Local Control Server 215

8.6 Summary . 217

9 Cloud Control 218
9.1 Introduction to Remote Control . 218
9.2 Cloud Data Communication Protocols . 219

9.2.1 MQTT Introduction . 219
9.2.2 MQTT Principles . 220
9.2.3 MQTT Message Format . 221
9.2.4 Protocol Comparison . 226
9.2.5 Setting Up MQTT Broker on Linux and Windows 226
9.2.6 Setting Up MQTT Client Based on ESP-IDF 228

9.3 Ensuring MQTT Data Security . 230
9.3.1 Meaning and Function of Certificates 230
9.3.2 Generating Certificates Locally . 232
9.3.3 Configuring MQTT Broker . 234
9.3.4 Configuring MQTT Client . 234

9.4 Practice: Remote Control through ESP RainMaker 236
9.4.1 ESP RainMaker Basics . 236
9.4.2 Node and Cloud Backend Communication Protocol 237
9.4.3 Communication between Client and Cloud Backend 242
9.4.4 User Roles . 245
9.4.5 Basic Services . 246
9.4.6 Smart Light Example . 248
9.4.7 RainMaker App and Third-Party Integrations 255

9.5 Summary . 260

10 Smartphone App Development 262
10.1 Introduction to Smartphone App Development 262

10.1.1 Overview of Smartphone App Development 263
10.1.2 Structure of the Android Project . 263
10.1.3 Structure of the iOS Project . 264
10.1.4 Lifecycle of an Android Activity . 265
10.1.5 Lifecycle of iOS ViewController . 266

10.2 Creating a New Smartphone App Project . 268
10.2.1 Preparing for Android Development 268
10.2.2 Creating a New Android Project . 268
10.2.3 Adding Dependencies for MyRainmaker 269
10.2.4 Permission Request in Android . 270
10.2.5 Preparing for iOS Development . 270
10.2.6 Creating a New iOS Project . 271
10.2.7 Adding Dependencies for MyRainmaker 272
10.2.8 Permission Request in iOS . 273

10.3 Analysis of the App’s Functional Requirements 274
10.3.1 Analysis of the Project’s Functional Requirements 275

10.3.2 Analysis of User Management Requirements 275
10.3.3 Analysis of Device Provisioning and Binding Requirements 276
10.3.4 Analysis of Remote-Control Requirements 276
10.3.5 Analysis of Scheduling Requirements 277
10.3.6 Analysis of User Centre Requirements 278

10.4 Development of User Management . 278
10.4.1 Introduction to RainMaker APIs . 278
10.4.2 Initiating Communication via Smartphone 279
10.4.3 Account Registration . 279
10.4.4 Account Login . 282

10.5 Development of Device Provisioning . 285
10.5.1 Scanning Devices . 286
10.5.2 Connecting Devices . 288
10.5.3 Generating Secret Keys . 291
10.5.4 Getting Node ID . 291
10.5.5 Provisioning Devices . 293

10.6 Development of Device Control . 295
10.6.1 Binding Devices to Cloud Accounts . 296
10.6.2 Getting a List of Devices . 298
10.6.3 Getting Device Status . 301
10.6.4 Changing Device Status . 303

10.7 Development of Scheduling and User Centre 306
10.7.1 Implementing Scheduling Function . 306
10.7.2 Implementing User Centre . 308
10.7.3 More Cloud APIs . 311

10.8 Summary . 312

11 Firmware Upgrade and Version Management 313
11.1 Firmware Upgrade . 313

11.1.1 Overview of Partition Tables . 314
11.1.2 Firmware Boot Process . 316
11.1.3 Overview of the OTA Mechanism . 318

11.2 Firmware Version Management . 321
11.2.1 Firmware Marking . 321
11.2.2 Rollback and Anti-Rollback . 323

11.3 Practice: Over-the-air (OTA) Example . 324
11.3.1 Upgrade Firmware Through a Local Host 324
11.3.2 Upgrade Firmware Through ESP RainMaker 327

11.4 Summary . 334

IV Optimisation and Mass Production 335

12 Power Management and Low-Power Optimisation 336
12.1 ESP32-C3 Power Management . 336

12.1.1 Dynamic Frequency Scaling . 337
12.1.2 Power Management Configuration . 339

12.2 ESP32-C3 Low-Power Mode . 339
12.2.1 Modem-sleep mode . 340
12.2.2 Light-sleep Mode . 342
12.2.3 Deep-sleep mode . 347
12.2.4 Current Consumption in Different Power Modes 349

12.3 Power Management and Low-Power Debugging 350
12.3.1 Log Debugging . 351
12.3.2 GPIO Debugging . 353

12.4 Practice: Power Management in Smart Light Project 354
12.4.1 Configuring Power Management Feature 355
12.4.2 Use Power Management Locks . 356
12.4.3 Verifying Power Consumption . 357

12.5 Summary . 358

13 Enhanced Device Security Features 359
13.1 Overview of IoT Device Data Security . 359

13.1.1 Why Securing IoT Device Data? . 360
13.1.2 Basic Requirements for IoT Device Data Security 361

13.2 Data Integrity Protection . 362
13.2.1 Introduction to Integrity Verification Method 362
13.2.2 Integrity Verification of Firmware Data 363
13.2.3 Example . 364

13.3 Data Confidentiality Protection . 364
13.3.1 Introduction to Data Encryption . 364
13.3.2 Introduction to Flash Encryption Scheme 366
13.3.3 Flash Encryption Key Storage . 369
13.3.4 Working Mode of Flash Encryption . 370
13.3.5 Flash Encryption Process . 371
13.3.6 Introduction to NVS Encryption . 373
13.3.7 Examples of Flash Encryption and NVS Encryption 374

13.4 Data Legitimacy Protection . 376
13.4.1 Introduction to Digital Signature . 376
13.4.2 Overview of Secure Boot Scheme . 378

13.4.3 Introduction to Software Secure Boot 378
13.4.4 Introduction to Hardware Secure Boot 380
13.4.5 Examples . 384

13.5 Practice: Security Features In Mass Production 386
13.5.1 Flash Encryption and Secure Boot . 386
13.5.2 Enabling Flash Encryption and Secure Boot with Batch Flash Tools . . 387
13.5.3 Enabling Flash Encryption and Secure Boot in Smart Light Project . . . 388

13.6 Summary . 388

14 Firmware Burning and Testing for Mass Production 389
14.1 Firmware Burning in Mass Production . 389

14.1.1 Defining Data Partitions . 389
14.1.2 Firmware Burning . 392

14.2 Mass Production Testing . 393
14.3 Practice: Mass Production Data in Smart Light Project 394
14.4 Summary . 394

15 ESP Insights: Remote Monitoring Platform 395
15.1 Introduction to ESP Insights . 395
15.2 Getting Started with ESP Insights . 399

15.2.1 Getting Started with ESP Insights in the esp-insights Project 399
15.2.2 Running Example in the esp-insights Project 401
15.2.3 Reporting Coredump Information . 401
15.2.4 Customising Logs of Interest . 402
15.2.5 Reporting Reboot Reason . 403
15.2.6 Reporting Custom Metrics . 403

15.3 Practice: Using ESP Insights in Smart Light Project 406
15.4 Summary . 407

Introduction

ESP32-C3 is a single-core Wi-Fi and Bluetooth 5 (LE) microcontroller SoC, based on the
open-source RISC-V architecture. It strikes the right balance of power, I/O capabilities,
and security, thus offering the optimal cost-effective solution for connected devices. To
show various applications of the ESP32-C3 family, this book by Espressif will take you on
an interesting journey through AIoT, starting from the basics of IoT project development
and environment setup to practical examples. The first four chapters talk about IoT, ESP
RainMaker and ESP-IDF. Chapter 5 and 6 brief on hardware design and driver development.
As you progress, you’ll discover how to configure your project through Wi-Fi networks and
mobile Apps. Finally, you’ll learn to optimize your project and put it into mass production.

If you are an engineer in related fields, a software architect, a teacher, a student, or anyone
who has an interest in IoT, this book is for you.

You may download the code example used in this book from Espressif’s site on GitHub. For
latest information on IoT development, please follow our official account.

Preface
An Informatising World

Riding the wave of Internet, Internet of Things (IoT) made its grand debut to become a
new type of infrastructure in digital economy. To bring the technology closer to the public,
Espressif Systems works for the vision that developers from all walks of life can use IoT to
solve some of the most pressing problems of our times. A world of “Intelligent Network of
All Things” is what we are expecting from the future.

Designing our own chips makes a critical component of that vision. It is to be a marathon, re-
quiring constant breakthroughs against technological boundaries. From the “Game Changer”
ESP8266 to the ESP32 series integrating Wi-Fi and Bluetoothr (LE) connectivity, followed
by ESP32-S3 equipped by AI acceleration, Espressif never stops researching and develop-
ing products for AIoT solutions. With our open-source software, such as the IoT Develop-
ment Framework ESP-IDF, Mesh Development Framework ESP-MDF, and Device Connectiv-
ity Platform ESP RainMaker, we have created an independent framework for building AIoT
applications.

As of July 2022, the cumulative shipments of Espressif’s IoT chipsets have exceeded 800
million, leading in the Wi-Fi MCU market and powering up a huge number of connected de-
vices worldwide. Pursuit for excellence makes every Espressif product a big hit for its high
level of integration and cost efficiency. The release of ESP32-C3 marks a significant mile-
stone of Espressif’s self-developed technology. It is a single-core, 32-bit, RISC-V-based MCU
with 400KB of SRAM, which can run at 160MHz. It has integrated 2.4 GHz Wi-Fi and Blue-
tooth 5 (LE) with a long-range support. It strikes a fine balance of power, I/O capabilities,
and security, thus offering the optimal cost-effective solution for connected devices. Based
on such powerful ESP32-C3, this book is intended to help readers understand IoT-related
knowledge with detailed illustration and practical examples.

Why we wrote this book?

Espressif Systems is more than a semiconductor company. It is also an IoT platform company,
which always strives for breakthroughs and innovations in the field of technology. At the
same time, Espressif has open-sourced and shared its self-developed operating system and
software framework with the community, forming a unique ecosystem. Engineers, makers,
and technology enthusiasts actively develop new software applications based on Espressif’s
products, freely communicate, and share their experience. You can see developers’ fascinat-
ing ideas on various platforms all the time, such as YouTube and GitHub. The popularity
of Espressif’s products has stimulated an increasing number of authors who have produced
over 100 books based on Espressif chipsets, in more than ten languages, including English,
Chinese, German, French, and Japanese.

It is the support and trust of community partners that encourages Espressif’s continuous
innovation. “We strive to make our chips, operating systems, frameworks, solutions, Cloud,
business practices, tools, documentation, writings, ideas, etc., ever more relevant to the an-
swers people need in contemporary life’s most pressing problems. This is Espressif’s highest
ambition and moral compass.” said Mr. Teo Swee Ann, Founder and CEO of Espressif.

Espressif values reading and ideas. As the continuous upgrading of IoT technology poses
higher requirements on engineers, how can we help more people to quickly master IoT chips,
operating systems, software frameworks, application schemes and cloud service products?
As the saying goes, it is better to teach a man how to fish than to give him fish. In a brain-
storming session, it occurred to us that we could write a book to systematically sort out the
key knowledge of IoT development. We hit it off, quickly gathered a group of senior engi-
neers, and combined the experience of the technical team in embedded programming, IoT
hardware and software development, all contributing to the publishing of this book. In the
process of writing, we tried our best to be objective and fair, stripped of the cocoon, and use
concise expressions to tell the complexity and charm of the Internet of Things. We carefully
summarised the common questions, referred to the feedback and suggestions of the commu-
nity, in order to clearly answer the questions encountered in the development process, and
provide practical IoT development guidelines for relevant technicians and decision-makers.

Book Structure

This book takes an engineer-centred perspective and expounds the necessary knowledge for
IoT project development step by step. It is composed of four parts, as follows:

• Preparation (Chapter 1–4): This part introduces the architecture of IoT, typical IoT
project framework, the ESP RainMakerr cloud platform, and the development envi-
ronment ESP-IDF, so as to lay a solid foundation for IoT project development.

• Hardware and Driver Development (Chapter 5–6): Based on the ESP32-C3 chipset,
this part elaborates on the minimum hardware system and driver development, and
implements the control of dimming, colour grading, and wireless communication.

• Wireless Communication and Control (Chapter 7–11): This part explains the in-
telligent Wi-Fi configuration scheme based on ESP32-C3 chip, local & cloud control
protocols, and local & remote control of devices. It also provides schemes for develop-
ing smartphone apps, firmware upgrade, and version management.

• Optimisation and Mass Production (Chapter 12-15): This part is intended for ad-
vanced IoT applications, focusing on optimisation of products in power management,
low-power optimisation, and enhanced security. It also introduces firmware burning
and testing in mass production, and how to diagnose the running status and logs of
device firmware through the remote monitoring platform ESP Insights.

About the Source Code

Readers can run the example programmes in this book, either by entering the code manually
or by using the source code that accompanies the book. We emphasise the combination of
theory and practice, and thus set a Practice section based on the Smart Light project in
almost every chapter. All the codes are open-sourced. Readers are welcome to download
the source code and discuss it in the sections related to this book on GitHub and our official
forum esp32.com. The open-sourced code of this book is subject to the terms of Apache
License 2.0.

Author’s Note

This book is officially produced by Espressif Systems and is written by the company’s senior
engineers. It is suitable for managers and R&D personnel in IoT-related industries, teachers
and students of related majors, and enthusiasts in the field of Internet of Things. We hope
that this book can serve as a work manual, a reference, and a bedside book, to be like a
good tutor and friend.

While compiling this book, we referred to some relevant research results of experts, schol-
ars, and technicians at home and abroad, and we did our best to cite them according to
academic norms. However, it is unavoidable that there should be some omissions, so here
we would like to express our deep respect and gratitude to all the relevant authors. In addi-
tion, we have quoted information from the Internet, so we would like to thank the original
authors and publishers and apologise that we cannot indicate the source of every piece of
information.

In order to produce a book of high quality, we have organised rounds of internal discussions,
and learned from the suggestions and feedback of trial readers and publisher editors. Here,
we would like to thank you again for your help which all contributed to this successful work.

Last, but the most importantly, thanks to everyone at Espressif who has worked so hard for
the birth and popularization of our products.

The development of IoT projects involves a wide range of knowledge. Limited to the length
of the book, as well as the level and experience of the author, omissions are unavoidable.
Therefore, we kindly request that experts and readers criticise and correct our mistakes. If
you have any suggestions for this book, please contact us at book@espressif.com. We
look forward to your feedback.

How to use this book?
The code of the projects in this book has been open sourced. You can download it from our
GitHub repository and share your thoughts and questions on our official forum.

GitHub: https://github.com/espressif/book-esp32c3-iot-projects
Forum: https://www.esp32.com/bookc3

Throughout the book, there will be parts highlighted as shown below.

Source code

In this book, we emphasise the combination of theory and practice, and thus set a Practice

section about the Smart Light project in almost every chapter. Corresponding steps and
source page will be marked between two lines beginning with the tag Source code.

NOTE/TIPS

This is where you may find some critical information and reminding for successfully de-
bugging your programme. They will be marked between two thick lines beginning with
the tag NOTE or TIPS.

Most of the commands in this book are executed under Linux, prompted by the character
“$”. If the command requires superuser privileges to execute, the prompt will be replaced
by “#”. The command prompt on Mac systems is “%”, as used in Section 4.2.3 Installing
ESP-IDF on Mac.

The body text in this book will be printed in Charter, while the code examples, components,
functions, variables, code file names, code directories, and strings will be in Courier New.

Commands or texts that need to be input by the user, and commands that can be entered by
pressing the “Enter” key will be printed in Courier New bold. Logs and code blocks will
be presented in light blue boxes .

Example:

Second, use esp-idf/components/nvs flash/nvs partition generator/nvs

partition gen.py to generate the NVS partition binary file on the development host with
the following command:

$ python $IDF PATH/components/nvs flash/nvs partition generator/nvs partition
gen.py --input mass prod.csv --output mass prod.bin --size NVS PARTITION SIZE

https://github.com/espressif/book-esp32c3-iot-projects
https://www.esp32.com/bookc3

Chapter
1

Introduction to IoT

At the end of the 20th century, with the rise of computer networks and communication tech-
nologies, Internet rapidly integrated into people’s lives. As Internet technology continues
to mature, the idea of Internet of Things (IoT) was born. Literally, IoT means an Internet
where things are connected. While the original Internet breaks the limits of space and time
and narrows the distance between “person and person”, IoT makes “things” an important
participant, bringing “people” and “things” closer together. In the foreseeable future, IoT is
set to become the driving force of the information industry.

So, what is the Internet of Things?

It is hard to accurately define the Internet of Things, as its meaning and scope are constantly
evolving. In 1995, Bill Gates first brought up the idea of IoT in his book The Road Ahead.
Simply put, IoT enables objects to exchange information with each other through Internet.
Its ultimate goal is to establish an “Internet of Everything”. This is an early interpretation of
IoT, as well as a fantasy of future technology. Thirty years later, with the rapid development
of economy and technology, the fantasy is coming into reality. From smart devices, smart
homes, smart cities, Internet of Vehicles and wearable devices, to the “metaverse” supported
by IoT technologies, new concepts are constantly emerging. In this chapter, we will begin
with an explanation of the architecture of Internet of Things, and then introduce the most
common IoT application, the smart home, in order to help you get a clear understanding of
IoT.

1.1 Architecture of IoT
Internet of Things involves multiple technologies which have different application needs
and forms in different industries. In order to sort out the structure, the key technologies
and application characteristics of IoT, it is necessary to establish a unified architecture and
a standard technical system. In this book, the architecture of IoT is simply divided into four
layers: perception & control layer, network layer, platform layer, and application layer.

Perception & Control Layer
As the most basic element of the IoT architecture, perception & control layer is the core
to realise the comprehensive sensing of IoT. Its main function is to collect, identify and
control information. It consists of a variety of devices with the ability of perception,

2

identification, control and execution, and is responsible for retrieving and analysing data
such as material properties, behavioural trends, and device status. In this way, IoT gets
to recognise the real physical world. Besides, the layer is also able to control the status of
the device.

The most common devices of this layer are various sensors, which play an important
role in information collection and identification. Sensors are like human sensory organs,
such as photosensitive sensors equalling to vision, acoustic sensors to hearing, gas sensors
to smelling, and pressure- and temperature-sensitive sensors to touching. With all these
“sensory organs”, objects become “alive” and capable of intelligent perception, recognition
and manipulation of the physical world.

Network Layer
The main function of the network layer is to transmit information, including data obtained
from the perception & control layer to specified target, as well as commands issued from
the application layer back to the perception & control layer. It serves as an important
communication bridge connecting different layers of an IoT system. To set up a basic
model of Internet of Things, it involves two steps to integrate objects into a network:
access to Internet and transmission through Internet.

Access to Internet
Internet enables interconnection between person and person, but fails to include things
into the big family. Before the advent of IoT, most things were not “network-able”.
Thanks to the continuous development of technology, IoT manages to connect things to
the Internet, thus realizing interconnection between “people and things”, and “things
and things”. There are two common ways to implement Internet connection: wired
network access and wireless network access.

Wired network access methods include Ethernet, serial communication (e.g., RS-232,
RS-485) and USB, while wireless network access depends on wireless communication,
which can be further divided into short-range wireless communication and long-range
wireless communication.

Short-range wireless communication includes ZigBee, Bluetoothr, Wi-Fi, Near-Field
Communication (NFC), and Radio Frequency Identification (RFID). Long-range wire-
less communication includes Enhanced Machine Type Communication (eMTC), LoRa,
Narrow Band Internet of Things (NB-IoT), 2G, 3G, 4G, 5G, etc.

Transmission through Internet
Different methods of Internet access lead to corresponding physical transmission link
of data. The next thing is to decide which communication protocol to use to transmit
the data. Compared with Internet terminals, most IoT terminals currently have fewer

Chapter 1. Introduction to IoT 3

available resources, such as processing performance, storage capacity, network rate,
etc., so it is necessary to choose a communication protocol that occupies fewer resources
in IoT applications. There are two communication protocols that are widely used today:
Message Queuing Telemetry Transport (MQTT) and Constrained Application Protocol
(CoAP).

Platform Layer
The platform layer mainly refers to IoT cloud platforms. When all IoT terminals are net-
worked, their data need to be aggregated on an IoT cloud platform to be calculated and
stored. The platform layer mainly supports IoT applications in facilitating access and
management of massive devices. It connects IoT terminals to the cloud platform, collects
terminal data, and issues commands to terminals, so as to implement remote control. As
an intermediate service to assign equipment to industry applications, the platform layer
plays a connecting role in the entire IoT architecture, carrying abstract business logic
and standardized core data model, which can not only realize rapid access of devices,
but also provide powerful modular capabilities to meet various needs in industry appli-
cation scenarios. The platform layer mainly includes functional modules such as device
access, device management, security management, message communication, monitoring
operation and maintenance, and data applications.

• Device access, realising the connection and communication between terminals and IoT
cloud platforms.

• Device management, including functions such as device creation, device maintenance,
data conversion, data synchronization, and device distribution.

• Security management, ensuring the security of IoT data transmission from the per-
spectives of security authentication and communication security.

• Message communication, including three transmission directions, that is, the terminal
sends data to the IoT cloud platform, the IoT cloud platform sends data to the server
side or other IoT cloud platforms, and the server side remotely controls IoT devices.

• Monitoring O&M, involving monitoring and diagnosis, firmware upgrade, online de-
bugging, log services, etc.

• Data applications, involving the storage, analysis and application of data.

Application Layer
The application layer uses the data from the platform layer to manage the application,
filtering and processing them with tools such as databases and analysis software. The
resulting data can be used for real-world IoT applications such as smart healthcare, smart
agriculture, smart homes, and smart cities.

Of course, the architecture of IoT can be subdivided into more layers, but no matter how
many layers it consists of, the underlying principle remains essentially the same. Learning

4 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

about the architecture of IoT helps deepen our understanding of IoT technologies and build
fully functional IoT projects.

1.2 IoT Application in Smart Homes
IoT has penetrated into all walks of life, and the most closely related IoT application to us
is the smart home. Many traditional appliances are now equipped with one or more IoT
devices, and many newly built houses are designed with IoT technologies from the start.
Figure 1.1 shows some common smart home devices.

Figure 1.1. Common smart home devices

The development of smart home can be simply divided into smart product stage, scene
interconnection stage and intelligent stage, as shown in Figure 1.2.

Figure 1.2. Development stage of smart home

Chapter 1. Introduction to IoT 5

The first stage is about smart products. Different from traditional homes, in smart homes,
IoT devices receive signals with sensors, and are networked through wireless communication
technologies such as Wi-Fi, Bluetooth LE, and ZigBee. Users can control smart products in a
variety of ways, such as smartphone apps, voice assistants, smart speaker control, etc.

The second stage focuses on scene interconnection. In this stage, developers are no longer
considering controlling single smart product, but interconnecting two or more smart prod-
ucts, automating to a certain extent, and finally forming a custom scene mode. For example,
when the user presses any scene mode button, the lights, curtains, and air conditioners will
be automatically adapted to the presets. Of course, there is the prerequisite that the linkage
logic are readily set up, including trigger conditions and execution actions. Imagine that the
air conditioning heating mode is triggered when the indoor temperature drops below 10°C;
that at 7 o’clock in the morning, music is played to wake up the user, smart curtains are
opened, and the rice cooker or bread toaster starts through a smart socket; as the user gets
up and finishes washing, breakfast is already served, so that there will be no delay in going
to work. How convenient has our life become!

The third stage goes to intelligence stage. As more smart home devices are accessed, so
will the types of data generated. With the help of cloud computing, big data and artificial
intelligence, it is like a “smarter brain” has been planted into smart homes, which no longer
require frequent commands from the user. They collect data from previous interactions and
learn the user’s behaviour patterns and preferences, so as to automate activities, including
providing recommendations for decision-making.

Currently, most smart homes are at the scene interconnection stage. As the penetration
rate and intelligence of smart products increase, barriers between communication protocols
are being removed. In the future, smart homes are bound to become really “smart”, just
like the AI system Jarvis in Iron Man, which can not only help the user control various
devices, handle daily affairs, but also have super computing power and thinking ability. In
the intelligent stage, human beings will receive better services both in quantity and quality.

6 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Chapter
2

Introduction and Practice of
IoT Projects

In Chapter 1, we introduced the architecture of IoT, and the roles and interrelationships of
the perception & control layer, network layer, platform layer, and application layer, as well
as the development of smart home. However, just like when we learn to paint, knowing
the theoretical knowledge is far from enough. We have to “get our hands dirty” to put IoT
projects into practice in order to truly master the technology. In addition, when a project
moves to the mass production stage, it is necessary to consider more factors such as net-
work connection, configuration, IoT cloud platform interaction, firmware management and
updates, mass production management, and security configuration.

So, what do we need to pay attention to when developing a complete IoT project?

In Chapter 1, we mentioned that smart home is one of the most common IoT application
scenarios, and smart lights are one of the most basic and practical appliances, which can be
used in homes, hotels, gyms, hospitals, etc. Therefore, in this book, we will take the con-
struction of a smart light project as the starting point, explain its components and features,
and provide guidance on project development. We hope that you can draw inferences from
this case to create more IoT applications.

2.1 Introduction to Typical IoT Projects
In terms of development, basic functional modules of IoT projects can be classified into
software and hardware development of IoT devices, client application development, and
IoT cloud platform development. It is important to clarify the basic functional modules,
which will be further described in this section.

2.1.1 Basic Modules for Common IoT Devices

Software and hardware development of IoT devices include the following basic modules:

Data collection
As the bottom layer of the IoT architecture, the IoT devices of the perception & control
layer connect sensors and devices through their chips and peripherals to achieve data
collection and operation control.

7

Account binding and initial configuration
For most IoT devices, account binding and initial configuration are completed in one oper-
ational process, for example, connecting devices with users by configuring Wi-Fi network.

Interaction with IoT cloud platforms
To monitor and control IoT devices, it is also necessary to connect them to IoT cloud
platforms, in order to give commands and report status through interaction between each
other.

Device control
When connected with IoT cloud platforms, devices can communicate with the cloud and
be registered, bound, or controlled. Users can query product status and carry out other
operations on the smartphone app through IoT cloud platforms or local communication
protocols.

Firmware upgrade
IoT devices can also achieve firmware upgrade based on manufacturers’ needs. By re-
ceiving commands sent by the cloud, firmware upgrade and version management will be
realized. With this firmware upgrade feature, you can continuously enhance the functions
of IoT devices, fix defects, and improve user experience.

2.1.2 Basic Modules of Client Applications

Client applications (e.g., smartphone apps) mainly include the following basic modules:

Account system and authorisation
It supports account and device authorisation.

Device control
Smartphone apps are usually equipped with controlling functions. Users can easily con-
nect to IoT devices, and manage them anytime, anywhere through smartphone apps. In
a real-world smart home, devices are mostly controlled through smartphone apps, which
not only enables intelligent management of devices, but also saves the cost of manpower.
Therefore, device control is a must for client applications, such as device function attribute
control, scene control, scheduling, remote control, device linkage, etc. Smart home users
can also customise scenes according to personal needs, controlling lighting, home appli-
ances, entrance, etc., to make home life more comfortable and convenient. They can time
air conditioning, turn off it remotely, set the hallway light on automatically once the door
is unlocked, or switch to the “theater” mode with one single button.

Notification
Client applications update real-time status of IoT devices, and send alerts when devices
go abnormal.

8 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

After-sales customer service
Smartphone apps can provide after-sales services for products, to solve problems related
to IoT device failures and technical operations in a timely manner.

Featured functions
To meet the needs of different users, other functions may be added, such as Shake, NFC,
GPS, etc. GPS can help set the accuracy of scene operations according to location and
distance, while the Shake function allows users to set the commands to be executed for
specific device or scene by shaking.

2.1.3 Introduction to Common IoT Cloud Platforms

IoT cloud platform is an all-in-one platform which integrates functions such as device man-
agement, data security communication, and notification management. According to their
target group and accessibility, IoT cloud platforms can be divided into public IoT cloud
platforms (hereinafter referred to as “public cloud”) and private IoT cloud platforms (here-
inafter referred to as “private cloud”).

Public cloud usually indicates shared IoT cloud platforms for enterprises or individuals,
operated and maintained by platform providers, and shared through the Internet. It can be
free or low-cost, and provides services throughout the open public network, such as Alibaba
Cloud, Tencent Cloud, Baidu Cloud, AWS IoT, Google IoT, etc. As a supporting platform,
public cloud can integrate upstream service providers and downstream end users to create
a new value chain and ecosystem.

Private cloud is built for enterprise use only, thus guaranteeing the best control over data,
security, and service quality. Its services and infrastructure are maintained separately by
enterprises, and the supporting hardware and software are also dedicated to specific users.
Enterprises can customise cloud services to meet the needs of their business. At present,
some smart home manufacturers have already got private IoT cloud platforms and devel-
oped smart home applications based on them.

Public cloud and private cloud have their own advantages, which will be explained later.

To achieve communication connectivity, it is necessary to complete at least embedded devel-
opment on the device side, alongwith business servers, IoT cloud platforms, and smartphone
apps. Facing such a huge project, public cloud normally provides software development kits
for device-side and smartphone apps to speed up the process. Both public and private cloud
provide services including device access, device management, device shadow, and operation
and maintenance.

Device access
IoT cloud platforms need to provide not only interfaces for device access using protocols

Chapter 2. Introduction and Practice of IoT Projects 9

such as MQTT, CoAP, HTTPS, and WebSocket, but also the function of device security
authentication to block forged and illegal devices, effectively reducing the risk of being
compromised. Such authentication usually supports different mechanisms, so when de-
vices are mass-produced, it is necessary to pre-assign the device certificate according to
the selected authentication mechanism and burn it into the devices.

Device management
The device management function provided by IoT cloud platforms can not only help man-
ufacturers monitor the activation status and online status of their devices in real time,
but also allows options such as adding / removing devices, retrieving, adding / deleting
groups, firmware upgrade, and version management.

Device shadow
IoT cloud platforms can create a persistent virtual version (device shadow) for each de-
vice, and the status of the device shadow can be synchronised and obtained by smartphone
app or other devices through Internet transmission protocols. Device shadow stores the
latest reported status and expected status of each device, and even if the device is offline,
it can still obtain the status by calling APIs. Device shadow provides always-on APIs,
which makes it easier to build smartphone apps that interact with devices.

Operation and maintenance
The O&M function includes three aspects:
• Demonstrating statistical information about IoT devices and notifications.
• Log management allows information retrieval about device behavior, up / down mes-

sage flow, and message content.
• Device debugging supports command delivery, configuration update, and checking the

interaction between IoT cloud platforms and device messages.

2.2 Practice: Smart Light Project
After the theoretical introduction in each chapter, you will find a practice section related to
the Smart Light project to help you get hands-on experience. The project is based on Espres-
sif’s ESP32-C3 chip and ESP RainMaker IoT Cloud Platform, and covers wireless module
hardware in smart light products, embedded software for smart devices based on ESP32-
C3, smartphone apps, and ESP RainMaker interaction.

Source code

For better learning and developing experience, the project in this book has been open-
sourced. You can download the source code from our GitHub repository at https://github.
com/espressif/book-esp32c3-iot-projects.

10 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects
https://github.com/espressif/book-esp32c3-iot-projects

2.2.1 Project Structure

The Smart Light project consists of three parts:

i. Smart light devices based on ESP32-C3, responsible for interacting with IoT cloud
platforms, and controlling the switch, brightness and color temperature of the LED
lamp beads.

ii. Smartphone apps (including tablet apps running on Android and iOS), responsible
for network configuration of smart light products, as well as querying and controlling
their status.

iii. An IoT cloud platform based on ESP RainMaker. For simplification, we consider
the IoT cloud platform and business server as a whole in this book. Details about ESP
RainMaker will be provided in Chapter 3.

The correspondence between the Smart Light project structure and the architecture of IoT
is shown in Figure 2.1.

Figure 2.1. Structure of smart light project

2.2.2 Project Functions

Divided according to the structure, functions of each part are as follows.

Smart light devices
• Network configuration and connection.
• LED PWM control, such as switch, brightness, color temperature, etc.
• Automation or scene control, e.g., time switch.
• Encryption and secure boot of the Flash.
• Firmware upgrade and version management.

Chapter 2. Introduction and Practice of IoT Projects 11

Smartphone apps
• Network configuration and device binding.
• Smart light product control, such as switch, brightness, color temperature, etc.
• Automation or scene settings, e.g., time switch.
• Local/remote control.
• User registration, login, etc.

ESP RainMaker IoT cloud platform
• Enabling IoT device access.
• Providing device operation APIs accessible to smartphone apps.
• Firmware upgrade and version management.

2.2.3 Hardware Preparation

If interested in putting the project into practice, you will also need the following hardware:
smart lights, smartphones, Wi-Fi routers, and a computer that meets the installation require-
ments of the development environment.

Smart lights
Smart lights are a new type of bulbs, whose shape is the same as the general incandescent
bulb. A smart light is composed of capacitor step-down regulated power supply, wireless
module (with built-in ESP32-C3), LED controller and RGB LED matrix. When connected
to power, the 15 V DC voltage output after capacitor step-down, diode rectification, and
regulation provides energy to the LED controller and LED matrix. The LED controller can
automatically send high and low levels at certain intervals, switching the RGB LED matrix
between closed (lights on) and open (lights off), so that it can emit cyan, yellow, green,
purple, blue, red, and white light. The wireless module is responsible for connecting to
the Wi-Fi router, receiving and reporting the status of smart lights, and sending commands
to control the LED.

Figure 2.2. A simulated smart light

In the early development stage, you can simulate a smart light using the ESP32-C3-
DevKitM-1 board connected with RGB LED lamp beads (see Figure 2.2). But you should

12 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

note that this is not the only way to assemble a smart light. The hardware design of the
project in this book only contains a wireless module (with built-in ESP32-C3), but not a
complete smart light hardware design.

In addition, Espressif also produces a ESP32-C3-based audio development board – ESP32-
C3-Lyra – for controlling lights with audio. The board has interfaces for microphones and
speakers and can control LED strips. It can be used for developing ultra-low-cost, high-
performance audio broadcasters and rhythm light strips. Figure 2.3 shows a ESP32-C3-
Lyra board linked with a strip of 40 LED lights.

Figure 2.3. ESP32-C3-Lyra linked with a strip of 40 LED lights

Smartphones (Android/iOS)
The Smart Light project involves the development of a smartphone app for setting up and
controlling smart light products.

Wi-Fi routers
Wi-Fi routers convert wired network signals and mobile network signals into wireless net-
work signals, for computers, smartphones, tablets, and other wireless devices to connect
to the network. For example, broadband in the home only needs to be connected to a
Wi-Fi router to achieve wireless networking of Wi-Fi devices. The mainstream protocol
standard supported by Wi-Fi routers is IEEE 802.11n, with an average TxRate of 300
Mbps, or 600 Mbps at maximum. They are backward compatible with IEEE 802.11b and
IEEE 802.11g. The ESP32-C3 chip by Espressif supports IEEE 802.11b/g/n, so you can
choose a single-band (2.4 GHz) or dual-band (2.4 GHz and 5 GHz) Wi-Fi router.

A computer (Linux/macOS/Windows)
Development environment will be introduced in Chapter 4.

Chapter 2. Introduction and Practice of IoT Projects 13

2.2.4 Development Process

Figure 2.4. Steps of developing the Smart Light project

Hardware design
Hardware design of IoT devices is essential to an IoT project. A complete smart light
project is intended to produce a lamp working under mains supply. Different manufac-
turers produce lamps of different styles and driver types, but their wireless modules are
usually of the same function. To simplify the development process of the Smart Ligh
project, this book only covers the hardware design and software development of wireless
modules.

IoT cloud platform configuration
To use IoT cloud platforms, you need to configure projects on the backend, such as creat-
ing products, creating devices, setting device properties, etc.

Embedded software development for IoT devices
Implement expected functions with ESP-IDF, Espressif’s device-side SDK, including con-
necting to IoT cloud platforms, developing LED drivers, and upgrading firmware.

Smartphone app development
Develop smartphone apps for Android and iOS systems to realise user registration and
login, device control and other functions.

IoT device optimisation
Once the basic development of IoT device functions is completed, you may turn to opti-
misation tasks, such as power optimisation.

Mass production testing
Carry out mass production tests according to related standards, such as equipment func-
tion test, aging test, RF test, etc.

Despite the steps listed above, a Smart Light project is not necessarily subject to such pro-
cedure as different tasks can also be carried out at the same time. For example, embedded
software and smartphone apps can be developed in parallel. Some steps may also need to
be repeated, such as IoT device optimisation and mass production testing.

14 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

2.3 Summary
In this chapter, we first expounded on the basic components and functional modules of
an IoT project, then introduced the Smart Light case for practice, refering to its structure,
functions, hardware preparation, and development process. Readers can draw inferences
from the practice and become confident to carry out IoT projects with minimum mistakes in
the future.

Chapter 2. Introduction and Practice of IoT Projects 15

Chapter
3

Introduction to ESP RainMaker

The Internet of Things (IoT) offers endless possibilities to change the way people live, yet
the development of IoT engineering is full of challenges. With public clouds, terminal man-
ufacturers can implement product functionality through the following solutions:

Based on solution providers’ cloud platforms
In this way, terminal manufacturers only need to design the product hardware, then
connect the hardware to the cloud using provided communication module, and config-
ure the product functions following the guidelines. This is an efficient approach since
it eliminates the need for server-side and application-side development and operations
and maintenance (O&M). It allows terminal manufacturers to focus on hardware design
without having to consider cloud implementation. However, such solutions (e.g., device
firmware and App) are generally not open source, so the product functions will be lim-
ited by provider’s cloud platform which cannot be customized. Meanwhile, the user and
device data also belong to the cloud platform.

Based on cloud products
In this solution, after completing the hardware design, terminal manufacturers not only
need to implement cloud functions using one or more cloud products provided by the
public cloud, but also need to link the hardware with the cloud. For example, to connect
to Amazon Web Services (AWS), terminal manufacturers need to use AWS products such
as Amazon API Gateway, AWS IoT Core, and AWS Lambda to enable device access, re-
mote control, data storage, user management, and other basic functions. It not only asks
terminal manufacturers to flexibly use and configure cloud products with in-depth un-
derstanding and rich experience, but also requires them to consider the construction and
maintenance cost for initial and later stages This poses great challenges to the company’s
energy and resources.

Compared with public clouds, private clouds are usually built for specific projects and prod-
ucts. Private cloud developers are given highest level of freedom in protocol design and busi-
ness logic implementation. Terminal manufacturers can make products and design schemes
at will, and easily integrate and empower user data. Combining the high security, scalability
and reliability of public cloud with the advantages of private cloud, Espressif launched ESP

16

RainMaker, a deeply integrated private cloud solution based on Amazon cloud. Users can
deploy ESP RainMaker and build private cloud simply with an AWS account.

3.1 What is ESP RainMaker?
ESP RainMaker is a complete AIoT platform built with multiple mature AWS products. It
provides various services required for mass production such as device cloud access, device
upgrade, backend management, third-party login, voice integration, and user management.
By using the Serverless Application Repository (SAR) provided by AWS, terminal manufac-
turers can quickly deploy ESP RainMaker to their AWS accounts, which is time-efficient and
easy to operate. Managed and maintained by Espressif, the SAR used by ESP RainMaker
helps developers reduce cloud maintenance costs and accelerate the development of AIoT
products, thus building secure, stable, and customizable AIoT solutions. Figure 3.1 shows
the architecture of ESP RainMaker.

Figure 3.1. Architecture of ESP RainMaker

The ESP RainMaker public server by Espressif is free for all ESP enthusiasts, makers, and
educators for solution evaluation. Developers can log in with Apple, Google, or GitHub
accounts, and quickly build their own IoT application prototypes. The public server inte-
grates Alexa and Google Home, and provides voice control services, which are supported by
Alexa Skill and Google Actions. Its semantic recognition function is also powered by third
parties. RainMaker IoT devices only respond to specific actions. For an exhaustive list of
supported voice commands, please check the third-party platforms. In addition, Espressif
offers a public RainMaker App for users to control the products through smartphones.

Chapter 3. Introduction to ESP RainMaker 17

3.2 The Implementation of ESP RainMaker
As shown in Figure 3.2, ESP RainMaker consists of four parts:

• Claiming Service, enabling RainMaker devices to dynamically obtain certificates.
• RainMaker Cloud (also known as cloud backend), providing services such as message

filtering, user management, data storage, and third-party integrations.
• RainMaker Agent, enabling RainMaker devices to connect to RainMaker Cloud.
• RainMaker Client (RainMaker App or CLI scripts), for provisioning, user creation,

device association and control, etc.

Figure 3.2. Structure of ESP RainMaker

ESP RainMaker provides a complete set of tools for product development and mass produc-
tion, including:

RainMaker SDK
RainMaker SDK is based on ESP-IDF and provides the source code of the device-side
agent and related C APIs for firmware development. Developers only need to write the
application logic and leave the rest to the RainMaker framework. For more information
about C APIs, please visit https://bookc3.espressif.com/rm/c-api-reference.

RainMaker App
The public version of RainMaker App allows developers to complete device provisioning,
and control and query the status of devices (e.g., smart lighting products). It is available
on both iOS and Android app stores. For more details, please refer to Chapter 10.

REST APIs
REST APIs help users build their own applications similar to the RainMaker App. For more
information, please visit https://swaggerapis.rainmaker.espressif.com/.

18 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://bookc3.espressif.com/rm/c-api-reference
https://swaggerapis.rainmaker.espressif.com/

Python APIs
A Python-based CLI, which comes with the RainMaker SDK, is provided to implement all
functions similar to smartphone features. For more information about Python APIs, please
visit https://bookc3.espressif.com/rm/python-api-reference.

Admin CLI
Admin CLI, with higher level of access, is provided for ESP RainMaker private deployment
to generate device certificates in bulk.

3.2.1 Claiming Service

All communication between RainMaker devices and the cloud backend is carried out through
MQTT+TLS. In the context of ESP RainMaker, “Claiming” is the process in which devices
obtain certificates from the Claiming Service to connect to the cloud backend. Note that
Claiming Service is only applicable to the public RainMaker service, while for private de-
ployment, the device certificates need to be generated in bulk through Admin CLI. ESP
RainMaker supports three types of Claiming Service:

Self Claiming
The device itself fetches the certificates through a secret key pre-programmed in eFuse
after connecting to the Internet.

Host Driven Claiming
The certificates are obtained from the development host with the RainMaker account.

Assisted Claiming
The certificates are obtained via smartphone applications during provisioning.

3.2.2 RainMaker Agent

Figure 3.3. Structure of RainMaker SDK

The primary function of the RainMaker Agent is to provide connectivity and assist the appli-
cation layer to process uplink/downlink cloud data. It is built through the RainMaker SDK

Chapter 3. Introduction to ESP RainMaker 19

https://bookc3.espressif.com/rm/python-api-reference

and developed based on the proven ESP-IDF framework, using ESP-IDF components such as
RTOS, NVS, and MQTT. Figure 3.3 shows the structure of the RainMaker SDK.

The RainMaker SDK includes two major features.

Connection

i. Cooperating with Claiming Service to obtain device certificates.

ii. Connecting to the cloud backend using the secure MQTT protocol to provide remote
connectivity and implement remote control, message reporting, user management,
device management, etc. It uses the MQTT component in ESP-IDF by default and
provides an abstraction layer to interface with other protocol stacks.

iii. Providing wifi provisioning component for Wi-Fi connection and provisioning,
esp https ota component for OTA upgrades, and esp local ctrl component for
local device discovery and connection. All these objectives can be achieved through
simple configuration.

Data processing

i. Storing the device certificates issued by Claiming Service and the data needed when
running RainMaker, by default using the interface provided by the nvs flash com-
ponent, and providing APIs for developers for direct use.

ii. Using the callback mechanism to process uplink/downlink cloud data and automati-
cally unblocking the data to the application layer for easy processing by developers.
For example, the RainMaker SDK provides rich interfaces for establishing TSL (Thing
Specification Language) data, which are required to define TSL models to describe IoT
devices and implement functions such as timing, countdown, and voice control. For
basic interactive features such as timing, RainMaker SDK provides a development-free
solution which can be simply enabled when needed. Then, the RainMaker Agent will
directly process the data, send it to the cloud through the associated MQTT topic, and
feed back the data changes in the cloud backend through callback mechanism.

3.2.3 Cloud Backend

The cloud backend is built on AWS Serverless Computing and achieved through AWS Cog-
nito (identity management system), Amazon API Gateway, AWS Lambda (serverless com-
puting service), Amazon DynamoDB (NoSQL database), AWS IoT Core (IoT access core that
provides MQTT access and rule filtering), Amazon Simple Email Service (SES simple mail
service), Amazon CloudFront (fast delivery network), Amazon Simple Queue Service (SQS
message queuing), and Amazon S3 (bucket storage service). It is aimed to optimize scal-
ability and security. With ESP RainMaker, developers can manage devices without having
to write code in the cloud. Messages reported by devices are transparently transmitted to

20 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

application clients or other third-party services.

Table 3.1 shows the AWS cloud products and functions used in the cloud backend, with
more products and features under development.

Table 3.1. AWS cloud products and functions used by the cloud backend

AWS Cloud Product
Used by RainMaker

Function

AWS Cognito Managing user credentials and supporting third-party logins

AWS Lambda Implementing the core business logic of the cloud backend

Amazon Timestream Storing time series data

Amazon DynamoDB Storing customers’ private information

AWS IoT Core Supporting MQTT communication

Amazon SES Providing email sending services

Amazon CloudFront Accelerating the management of backend website access

Amazon SQS Forwarding messages from AWS IoT Core

3.2.4 RainMaker Client

RainMaker clients, such as App and CLI, communicate with the cloud backend through REST
APIs. Detailed information and instructions about REST APIs can be found in the Swagger
documentation provided by Espressif. RainMaker’s mobile application client is available for
both iOS and Android systems. It allows device provisioning, control, and sharing, as well
as creating and enabling countdown tasks and connecting to third-party platforms. It can
automatically load UI and icons according to the configuration reported by the devices and
fully display the device TSL.

For example, if a smart light is built on the RainMaker SDK-provided examples, the icon
and UI of the bulb light will be loaded automatically when the provisioning is completed.
Users can change the color and brightness of the light through the interface and achieve
third-party control by linking Alexa Smart Home Skill or Google Smart Home Actions to
their ESP RainMaker accounts. Figure 3.4 shows the icon and UI examples of the bulb light
respectively on Alexa, Google Home, and ESP RainMaker App.

Chapter 3. Introduction to ESP RainMaker 21

(a) Example - Alexa (b) Example - Google Home

(c) Example - ESP RainMaker

Figure 3.4. Examples of icon and UI of the bulb light
on Alexa, Google Home, and ESP RainMaker App

3.3 Practice: Key Points for Developing with ESP RainMaker
Once the device driver layer has been completed, developers may start to create TSL models
and process downlink data using the APIs provided by RainMaker SDK, and enable the ESP
RainMaker basic services based on the product definition and requirements.

22 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Section 9.4 of this book will explain the implementation of the LED smart light in RainMaker.
During debugging, developers can use the CLI tools in the RainMaker SDK to communicate
with the smart light (or call REST APIs from Swagger).

Chapter 10 will elaborate the usage of REST APIs in developing smartphone applications.
The OTA upgrades of LED smart lights will be covered in Chapter 11. If developers have
enabled the ESP Insights remote monitoring, the ESP RainMaker management backend will
display the ESP Insights data. Details will be presented in Chapter 15.

ESP RainMaker supports private deployment, which differs from the public RainMaker
server in the following ways:

Claiming Service
To generate certificates in private deployments, it is required to use the RainMaker Admin
CLI instead of Claiming. With public server, developers must be given admin rights to
implement firmware upgrade, but it is undesirable in commercial deployments. Therefore,
neither separate authentication service can be provided for self-claiming, nor admin rights
for host driven or assisted claiming.

Phone apps
In private deployments, applications need to be configured and compiled separately to
ensure that the account systems are not interoperable.

3rd party logins and voice integration
Developers have to configure separately via Google and Apple Developer accounts to en-
able 3rd party logins, as well as the Alexa Skill and Google Voice Assistant integration.

TIPS

For details about cloud deployment, please visit https://customer.rainmaker.espressif.
com. In terms of firmware, migration from public server to private server only requires
replacing device certificates, which greatly improves migration efficiency and reduces the
cost of migration and secondary debugging.

3.4 Features of ESP RainMaker
ESP RainMaker features are mainly targeted at three aspect - user management, end users,
and admins. All features are supported in both public and private servers unless otherwise
stated.

3.4.1 User Management

The user management features allow end users to register, log in, change passwords, retrieve
passwords, etc.

Chapter 3. Introduction to ESP RainMaker 23

https://customer.rainmaker.espressif.com
https://customer.rainmaker.espressif.com

Register and log in
The registration and login methods supported by RainMaker include:
• Email id + Password
• Phone number + Password
• Google account
• Apple account
• GitHub account (public server only)
• Amazon account (private server only)

NOTE

Sign up using Google/Amazon shares the user’s email address with RainMaker. Sign up
using Apple shares a dummy address that Apple assigns for the user specifically for the
RainMaker service. A RainMaker account will be automatically created for users signing
in with a Google, Apple, or Amazon account for the first time.

Change password
Valid only for Email id/Phone number based logins. All other active sessions will be logged
out after password is changed. As per AWS Cognito behaviour, the logged-out sessions
can stay active upto 1 hour.

Retrieve password
Valid only for Email id/Phone number based logins.

3.4.2 End User Features

Features open to end users include local and remote control and monitoring, scheduling,
device grouping, device sharing, push notifications, and third-party integrations.

Remote control and monitoring
• Query configuration, parameter values, and connection status for one or all devices.
• Set parameters for single or multiple devices.

Local control and monitoring
Mobile phone and the device need to be connected to the same network for local control.

Scheduling
• Users pre-set certain actions at a specific time.
• No Internet connection required for the device while executing the schedule.
• One time or repeat (by specifying days) for single or multiple devices.

Device grouping
Supports multi-level abstract grouping Group metadata can be used to create a Home -
Room structure.

24 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Device sharing
One or more devices can be shared with one or more users.

Push notifications
End users will receive push notifications for events such as
• New device(s) added/removed
• Device connected to cloud
• Device disconnected from cloud
• Device sharing requests created/accepted/declined
• Alert messages reported by devices

Third party integrations
Alexa and Google Voice Assistant are supported to control RainMaker devices, including
lights, switches, sockets, fans, and temperature sensors.

3.4.3 Admin Features

Admin features allow administrators to implement device registration, device grouping, and
OTA upgrades, and to view statistics and ESP Insights data.

Device registration
Generate device certificates and register with Admin CLI (private server only).

Device grouping
Create abstract or structured groups based on device information (private server only).

Over-the-Air (OTA) upgrades
Upload firmware based on version and model, to one or more devices or a group Monitor,
cancel, or archive OTA jobs.

View statistics
Viewable statistics include:
• Device registrations (certificates registered by the admin)
• Device activations (device connected for the first time)
• User accounts
• User-device association

View ESP Insights data
Viewable ESP Insights data include:
• Errors, warnings, and custom logs
• Crash reports and analysis
• Reboot reasons
• Metrics like memory usage, RSSI, etc.
• Custom metrics and variables

Chapter 3. Introduction to ESP RainMaker 25

3.5 Summary
In this chapter, we introduced some key differences between the public RainMaker deploy-
ment and the private deployment. The private ESP RainMaker solution launched by Espres-
sif is highly reliable and extensible. All ESP32 series chips have been connected and adapted
to AWS, which greatly reduces the cost. Developers can focus on prototype verification with-
out having to learn about AWS cloud products. We also explained the implementation and
features of ESP RainMaker, and some key points for development using the platform.

Scan to download ESP RainMaker for Android Scan to download ESP RainMaker for iOS

26 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Chapter
4

Setting Up
Development Environment

This chapter focuses on ESP-IDF, the official software development framework for ESP32-C3.
We’ll explain how to set up the environment on various operating systems, and introduce the
project structure and build system of ESP-IDF, as well as the usage of related development
tools. Then we’ll present the compiling and running process of an example project, while
offering a detailed explanation of the output log at each stage.

4.1 ESP-IDF Overview
ESP-IDF (Espressif IoT Development Framework) is a one-stop IoT development framework
provided by Espressif Technology. It uses C/C++ as the main development language and
supports cross-compilation under mainstream operating systems such as Linux, Mac, and
Windows. The example programs included in this book are developed using ESP-IDF, which
offers the following features:

• SoC system-level drivers. ESP-IDF includes drivers for ESP32, ESP32-S2, ESP32-C3,
and other chips. These drivers encompass peripheral low level (LL) library, hardware
abstraction layer (HAL) library, RTOS support and upper-layer driver software, etc.

• Essential components. ESP-IDF incorporates fundamental components required for IoT
development. This includes multiple network protocol stacks such as HTTP and MQTT,
a power management framework with dynamic frequency modulation, and features like
Flash Encryption and Secure Boot, etc.

• Development and production tools. ESP-IDF provides commonly used tools for build-
ing, flash, and debugging during development and mass production (see Figure 4.1),
such as the building system based on CMake, the cross-compilation tool chain based on
GCC, and the JTAG debugging tool based on OpenOCD, etc.

It is worth noting that the ESP-IDF code primarily adheres to the the Apache 2.0 open-source
license. Users can develop personal or commercial software without restrictions while com-
plying with the terms of the open-source license. Additionally, users are granted permanent
patent licenses free of charge, without the obligation to open-source any modifications made
to the source code.

27

Figure 4.1. Building, flashing, and debug-
ging tools for development and mass production

4.1.1 ESP-IDF Versions

The ESP-IDF code is hosted on GitHub as an open-source project. Currently, there are three
major versions available: v3, v4, and v5. Each major version usually contains various sub-
versions, such as v4.2, v4.3, and so on. Espressif Systems ensures a 30-month support for
bug fixes and security patches for each released sub-version. Therefore, revisions of sub-
versions are also released regularly, such as v4.3.1, v4.2.2, etc. Table 4.1 shows the support
status of different ESP-IDF versions for Espressif chips, indicating whether they are in a
preview stage (offering support for preview versions, which may lack certain features or
documentation) or are officially supported.

Table 4.1. Support status of different ESP-IDF versions for Espressif chips

Series v4.1 v4.2 v4.3 v4.4 v5.0

ESP32 supported supported supported supported supported

ESP32-S2 supported supported supported supported

ESP32-C3 supported supported supported

ESP32-S3 supported supported

ESP32-C2 supported

ESP32-H2 preview preview

28 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

The iteration of major versions often involves adjustments to the framework structure and
updates to the compilation system. For example, the major change from v3.* to v4.* was the
gradual migration of the build system from Make to CMake. On the other hand, iteration of
minor versions typically entails the addition of new features or support for new chips.

It is important to distinguish and understand the relationship between stable versions and
GitHub branches. Versions labeled as v*.* or v*.*.* represent stable versions that have
passed complete internal testing by Espressif. Once fixed, the code, tool chain, and release
documents for the same version remain unchanged. However, GitHub branches (e.g., the
release/v4.3 branch) undergo frequent code commits, often on a daily basis. Therefore,
two code snippets under the same branch may differ, necessitating developers to promptly
update their code accordingly.

4.1.2 ESP-IDF Git Workflow

Espressif follows a specific Git workflow for ESP-IDF, outlined as follows:

• New changes are made on the master branch, which serves as the main development
branch. The ESP-IDF version on the master branch always carries a -dev tag to indicate
that it is currently under development, such as v4.3-dev. Changes on the master

branch will first be reviewed and tested in Espressif’s internal repository, and then pushed
to GitHub after automated testing is complete.

• Once a new version has completed feature development on the master branch and met
the criteria for entering beta testing, it transitions to a new branch, such as release/
v4.3. In addition, this new branch is tagged as a pre-release version, like v4.3-beta1.
Developers can refer to the GitHub platform to access the complete list of branches and
tags for ESP-IDF. It’s important to note that the beta version (pre-release version) may
still have a significant number of known issues. As the beta version undergoes continuous
testing, bug fixes are added to both this version and the master branch simultaneously.
Meanwhile, the master branch may have already begun developing new features for the
next version. When testing is nearly complete, a release candidate (rc) label is added
to the branch, indicating that it is a potential candidate for the official release, such as
v4.3-rc1. At this stage, the branch remains a pre-release version.

• If no major bugs are discovered or reported, the pre-release version eventually receives
a major version label (e.g., v5.0) or a minor version label (e.g., v4.3) and becomes an
official release version, which is documented in the release notes page. Subsequently,
any bugs identified in this version are fixed on the release branch. After manual testing
is completed, the branch is assigned a bug-fix version label (e.g., v4.3.2), which is also
reflected on the release notes page.

Chapter 4. Setting Up Development Environment 29

4.1.3 Choosing a Suitable Version

Since ESP-IDF officially began supporting ESP32-C3 from version v4.3, and v4.4 has not
yet been officially released at the time of writing this book, the version used in this book
is v4.3.2, which is a revised version of v4.3. However, it is important to note that by the
time you read this book, v4.4 or newer versions may already be available. When selecting a
version, we recommend the following:

• For entry-level developers, it is advisable to choose the stable v4.3 version or its revised
version, which aligns with the example version used in this book.

• For mass production purposes, it is recommended to use the latest stable version to to
benefit from the most up-to-date technical support.

• If you intend to experiment with new chips or explore new product features, please
use the master branch. The latest version contains all the latest features, but keep in
mind that there may be known or unknown bugs present.

• If the stable version being used does not include the desired new features and you wish to
minimise the risks associated with the master branch, consider using the correspond-
ing release branch, such as the release/v4.4 branch. Espressif’s GitHub repository
will first create the release/v4.4 branch and subsequently release the stable v4.4 ver-
sion based on a specific historical snapshot of this branch, after completing all feature
development and testing.

4.1.4 Overview of ESP-IDF SDK Directory

The ESP-IDF SDK consists of two main directories: esp-idf and .espressif. The for-
mer contains ESP-IDF repository’s source code files and compilation scripts, while the lat-
ter mainly stores compilation tool chains and other software. Familiarity with these two
directories will help developers make better use of available resources and speed up the
development process. The directory structure of ESP-IDF is described below:

(1) ESP-IDF repository code directory (⇠/esp/esp-idf), as shown in Figure 4.2.

a. Component directory components

This core directory integrates numerous essential software components of ESP-IDF. No
project code can be compiled without relying on the components within this directory.
It includes driver support for various Espressif chips. From the LL library and HAL li-
brary interfaces for peripherals to the upper-level Driver and Virtual File System (VFS)
layer support, developers can choose the appropriate components at different levels for
their development needs. ESP-IDF also supports multiple standard network protocol
stacks such as TCP/IP, HTTP, MQTT, WebSocket, etc. Developers can utilise familiar
interfaces like Socket to build network applications. Components provide comprehen-

30 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 4.2. ESP-IDF repository code directory

sive functionality and can be easily integrated into applications, allowing developers to
focus solely on the business logic. Some common components include:

• driver: This component contains peripheral driver programs for various Espressif
chip series, such as GPIO, I2C, SPI, UART, LEDC (PWM), etc. The peripheral driver
programs in this component offer chip-independent abstract interfaces. Each periph-
eral has a common header file (such as gpio.h), eliminating the need to deal with
different chip-specific support questions.

• esp_wifi: Wi-Fi, as a special peripheral, is treated as a separate component. It
includes multiple APIs such as initialisation of various Wi-Fi driver modes, parameter
configuration, and event processing. Certain functions of this component are pro-
vided in the form of static link libraries. ESP-IDF also provides comprehensive driver
documentation for ease of use.

Chapter 4. Setting Up Development Environment 31

• freertos: This component contains the complete FreeRTOS code. Apart from pro-
viding comprehensive support for this operating system, Espressif has also extended
its support to dual-core chips. For dual-core chips like ESP32 and ESP32-S3, users
can create tasks on specific cores.

b. Document directory docs

This directory contains ESP-IDF related development documents, including the Get
Started Guide, API Reference Manual, Development Guide, etc.

NOTE

After being compiled by automated tools, the contents of this directory are de-
ployed at https://docs.espressif.com/projects/esp-idf. Please ensure to switch the
document target to ESP32-C3 and select the specified ESP-IDF version.

c. Script tool tools

This directory contains commonly used compilation front-end tools such as idf.py,
and the monitor terminal tool idf_monitor.py, etc. The sub-directory cmake also
contains core script files of the compilation system, serving as the foundation for im-
plementing ESP-IDF compilation rules. When adding the environment variables, the
contents within the tools directory are added to the system environment variable,
allowing idf.py to be executed directly under the project path.

d. Example program directory examples

This directory comprises a vast collection of ESP-IDF example programs that demon-
strate the usage of component APIs. The examples are organised into various sub-
directories based on their categories:

• get-started: This sub-directory includes entry-level examples like “hello world”
and “blink” to help users grasp the basics.

• bluetooth: You can find Bluetooth related examples here, including Bluetooth LE
Mesh, Bluetooth LE HID, BluFi, and more.

• wifi: This sub-directory focuses on Wi-Fi examples, including basic programs like
Wi-Fi SoftAP, Wi-Fi Station, espnow, as well as proprietary communication protocol
examples from Espressif. It also includes multiple application layer examples based
on Wi-Fi, such as Iperf, Sniffer, and Smart Config.

• peripherals: This extensive sub-directory is further divided into numerous sub-
folders based on peripheral names. It mainly contains peripheral driver examples for
Espressif chips, with each example featuring several sub-examples. For instance, the
gpio sub-directory includes two examples: GPIO and GPIO matrix keyboard. It’s
important to note that not all examples in this directory are applicable to ESP32-C3.

32 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://docs.espressif.com/projects/esp-idf

For example, the examples in usb/host are only applicable to peripherals with USB
Host hardware (such as ESP32-S3), and ESP32-C3 does not have this peripheral. The
compilation system typically provides prompts when setting the target. The README
file of each example lists the supported chips.

• protocols: This sub-directory contains examples for various communication pro-
tocols, including MQTT, HTTP, HTTP Server, PPPoS, Modbus, mDNS, SNTP, covering
a wide range of communication protocol examples required for IoT development.

• provisioning: Here, you’ll find provisioning examples for different methods, such
as Wi-Fi provisioning and Bluetooth LE provisioning.

• system: This sub-directory includes system debugging examples (e.g., stack tracing,
runtime tracing, task monitoring), power management examples (e.g., various sleep
modes, co-processors), and examples related to common system components like
console terminal, event loop, and system timer.

• storage: Within this sub-directory, you’ll discover examples of all file systems and
storage mechanisms supported by ESP-IDF (such as reading and writing of Flash, SD
card and other storage media), as well as examples of non-volatile storage (NVS),
FatFS, SPIFFS and other file system operations.

• security: This sub-directory contains examples related to flash encryption.

(2) ESP-IDF compilation tool chain directory (⇠/.espressif), as shown in Figure 4.3.

Figure 4.3. ESP-IDF compilation tool chain directory

Chapter 4. Setting Up Development Environment 33

a. Software distribution directory dist

The ESP-IDF tool chain and other software are distributed in the form of compressed
packages. During the installation process, the installation tool first downloads the com-
pressed package to the dist directory, and then extracts it to the specified directory.
Once the installation is complete, the contents in this directory can be safely removed.

b. Python virtual environment directory python env

Different versions of ESP-IDF rely on specific versions of Python packages. Installing
these packages directly on the same host can lead to conflicts between package versions.
To address this, ESP-IDF utilises Python virtual environments to isolate different pack-
age versions. With this mechanism, developers can install multiple versions of ESP-IDF
on the same host and easily switch between them by importing different environment
variables.

c. ESP-IDF compilation tool chain directory tools

This directory mainly contains cross-compilation tools required to compile ESP-IDF
projects, such as CMake tools, Ninja build tools, and the gcc tool chain that generates
the final executable program. Additionally, this directory houses the standard library
of the C/C++ language along with the corresponding header files. If a program refer-
ences a system header file like #include <stdio.h>, the compilation tool chain will
locate the stdio.h file within this directory.

4.2 Setting Up ESP-IDF Development Environment
The ESP-IDF development environment supports mainstream operating systems such as Win-
dows, Linux, and macOS. This section will introduce how to set up the development envi-
ronment on each system. It is recommended to develop ESP32-C3 on Linux system, which
will be introduced in detail here. Many instructions are applicable across platforms due to
the similarity of the development tools. Therefore, it is advised to carefully read the content
of this section.

NOTE

You can refer to the online documents available at https://bookc3.espressif.com/esp32c3,
which provide the commands mentioned in this section.

4.2.1 Setting up ESP-IDF Development Environment on Linux

The GNU development and debugging tools required for the ESP-IDF development environ-
ment are native to the Linux system. Additionally, the command-line terminal in Linux is
powerful and user-friendly, making it an ideal choice for ESP32-C3 development. You can

34 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://bookc3.espressif.com/esp32c3

select your preferred Linux distribution, but we recommend using Ubuntu or other Debian-
based systems. This section provides guidance on setting up the ESP-IDF development envi-
ronment on Ubuntu 20.04.

1. Install required packages

Open a new terminal and execute the following command to install all necessary packages.
The command will automatically skip packages that are already installed.

$ sudo apt-get install git wget flex bison gperf python3 python3-pip python3-
setuptools cmake ninja-build ccache libffi-dev libssl-dev dfu-util libusb-1.0-0

TIPS

You need to use the administrator account and password for the command above. By
default, no information will be displayed when entering the password. Simply press the
“Enter” key to continue the procedure.

Git is a key code management tool in ESP-IDF. After successfully setting up the development
environment, you can use the git log command to view all code changes made since the
creation of ESP-IDF. In addition, Git is also used in ESP-IDF to confirm version information,
which is necessary for installing the correct tool chain corresponding to specific versions.
Along with Git, other important system tools include Python. ESP-IDF incorporates numer-
ous automation scripts written in Python. Tools such as CMake, Ninja-build, and Ccache
are widely used in C/C++ projects and serve as the default code compilation and building
tools in ESP-IDF. libusb-1.0-0 and dfu-util are the main drivers used for USB serial
communication and firmware burning.

Once the software packages are installed, you can use the apt show <package_name>

command to obtain detailed descriptions of each package. For example, use apt show git

to print the description information for the Git tool.

Q: What to do if the Python version is not supported?

A: ESP-IDF v4.3 requires a Python version that is not lower than v3.6. For older versions of
Ubuntu, please manually download and install a higher version of Python and set Python3
as the default Python environment. You can find detailed instructions by searching for the
keyword update-alternatives python.

2. Download ESP-IDF repository code

Open a terminal and create a folder named esp in your home directory using the mkdir

command. You can choose a different name for the folder if you prefer. Use the cd command
to enter the folder.

Chapter 4. Setting Up Development Environment 35

$ mkdir -p ⇠/esp
$ cd ⇠/esp

Use the git clone command to download the ESP-IDF repository code, as shown below:

$ git clone -b v4.3.2 --recursive https://github.com/espressif/esp-idf.git

In the command above, the parameter -b v4.3.2 specifies the version to download (in
this case, version 4.3.2). The parameter --recursive ensures that all sub-repositories of
ESP-IDF are downloaded recursively. Information about sub-repositories can be found in the
.gitmodules file.

3. Install the ESP-IDF development tool chain

Espressif provides an automated script install.sh to download and install the tool chain.
This script checks the current ESP-IDF version and operating system environment, and then
downloads and installs appropriate version of Python tool packages and compilation tool
chains. The default installation path for the tool chain is ⇠/.espressif. All you need to
do is to navigate to the esp-idf directory and run install.sh.

$ cd ⇠/esp/esp-idf
$./install.sh

If you install the the tool chain successfully, the terminal will display:

All done!

At this point, you have successfully set up the ESP-IDF development environment.

4.2.2 Setting up ESP-IDF Development Environment on Windows

1. Download ESP-IDF tools installer

TIPS

It is recommended to set up the ESP-IDF development environment on Windows 10 or
above. You can download the installer from https://dl.espressif.com/dl/esp-idf/. The
installer is also an open-source software, and its source code can be viewed at https:
//github.com/espressif/idf-installer.

• Online ESP-IDF tools installer

This installer is relatively small, around 4 MB in size, and other packages and code will
be downloaded during the installation process. The advantage of the online installer
is that not only can software packages and code be downloaded on demand during the
installation process, but also allows the installation of all available releases of ESP-IDF
and the latest branch of GitHub code (such as the master branch). The disadvantage
is that it requires a network connection during the installation process, which may
cause installation failure due to network problems.

36 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://dl.espressif.com/dl/esp-idf/
https://github.com/espressif/idf-installer
https://github.com/espressif/idf-installer

• Offline ESP-IDF tools installer

This installer is larger, about 1 GB in size, and contains all the software packages and
code required for environment set up. The main advantage of the offline installer is
that it can be used on computers without Internet access, and generally has a higher
installation success rate. It should be noted that the offline installer can only install
stable releases of ESP-IDF identified by v*.* or v*.*.*.

2. Run the ESP-IDF tools installer

After downloading a suitable version of the installer (take ESP-IDF Tools Offline 4.3.2 for
example here), double-click the exe file to launch the ESP-IDF installation interface. The fol-
lowing demonstrates how to install ESP-IDF stable version v4.3.2 using the offline installer.

(1) In the “Select installation language” interface shown in Figure 4.4, select the language
to be used from the drop-down list.

Figure 4.4. “Select installation language” interface

(2) After selecting the language, click “OK” to pop up the “License agreement” interface
(see Figure 4.5). After carefully reading the installation license agreement, select “I
accept the agreement” and click “Next”.

Figure 4.5. “License agreement” interface

Chapter 4. Setting Up Development Environment 37

(3) Review the system configuration in the “Pre-installation system check” interface (see
Figure 4.6). Check the Windows version and the installed antivirus software informa-
tion. Click “Next” if all the configuration items are normal. Otherwise, you can click
“Full log” for solutions based on key items.

Figure 4.6. “System check before installation” interface

TIPS

You can submit logs to https://github.com/espressif/idf-installer/issues for help.

(4) Select the ESP-IDF installation directory. Here, select D:/.espressif, as shown in
Figure 4.7, and click “Next”. Please note that .espressif here is a hidden directory.
After the installation is completed, you can view the specific contents of this directory
by opening the file manager and displaying hidden items.

Figure 4.7. Select the ESP-IDF installation directory

38 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/idf-installer/issues

(5) Check the components that need to be installed, as shown in Figure 4.8. It is recom-
mended to use the default option, that is, complete installation, and then click “Next”.

Figure 4.8. Select the components to install

(6) Confirm the components to be installed and click “Install” to start the automated in-
stallation process, as shown in Figure 4.9. The installation process may last tens of
minutes and the progress bar of the installation process is shown in Figure 4.10. Please
wait patiently.

Figure 4.9. Preparing for installation

(7) After the installation is complete, it is recommended to check “Register the ESP-IDF
Tools executables as Windows Defender exclusions...” to prevent antivirus software
from deleting files. Adding exclusion items can also skip frequent scans by antivirus

Chapter 4. Setting Up Development Environment 39

Figure 4.10. Installation progress bar

software, greatly improving the code compilation efficiency of the Windows system.
Click “Finish” to complete the installation of the development environment, as shown
in Figure 4.11. You can choose to check “Run ESP-IDF PowerShell environment” or
“Run ESP-IDF command prompt”. Run the compilation window directly after installa-
tion to ensure that the development environment functions normally.

Figure 4.11. Installation completed

(8) Open the installed development environment in the program list (either ESP-IDF 4.3
CMD or ESP-IDF 4.3 PowerShell terminal, as shown in Figure 4.12), and the ESP-IDF
environment variable will be automatically added when running in the terminal. After
that, you can use the idf.py command for operations. The opened ESP-IDF 4.3 CMD
is shown in Figure 4.13.

40 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 4.12. Development environment installed

Figure 4.13. ESP-IDF 4.3 CMD

4.2.3 Setting up ESP-IDF Development Environment on Mac

The process of installing the ESP-IDF development environment on a Mac system is the
same as that on a Linux system. The commands for downloading the repository code and
installing the tool chain are exactly the same. Only the commands for installing dependency
packages are slightly different.

1. Install dependency packages

Open a terminal, and install pip, the Python package management tool, by running the
following command:

% sudo easy install pip

Install Homebrew, a package management tool for macOS, by running the following com-
mand:
% /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
HEAD/install.sh)"

Install the required dependency packages by running the following command:

% brew python3 install cmake ninja ccache dfu-util

2. Download ESP-IDF repository code

Follow the instructions provided in section 4.2.1 to download the ESP-IDF repository code.
The steps are the same as for downloading on a Linux system.

Chapter 4. Setting Up Development Environment 41

3. Install the ESP-IDF development tool chain

Follow the instructions provided in section 4.2.1 to install the ESP-IDF development tool
chain. The steps are the same as for installation on a Linux system.

4.2.4 Installing VS Code

By default, the ESP-IDF SDK does not include a code editing tool (though the latest ESP-IDF
installer for Windows offers the option to install ESP-IDF Eclipse). You can use any text
editing tool of your choice to edit the code and then compile it using terminal commands.

One popular code editing tool is VS Code (Visual Studio Code), which is a free and feature-
rich code editor with a user-friendly interface. It offers various plugins that provide func-
tionalities such as code navigation, syntax highlighting, Git version control, and terminal
integration. Additionally, Espressif has developed a dedicated plugin called Espressif IDF for
VS Code, which simplifies project configuration and debugging.

You can use the code command in the terminal to quickly open the current folder in VS
Code. Alternatively, you can use the shortcut Ctrl+⇠ to open the system’s default terminal
console within VS Code.

TIPS

It is recommended to use VS Code for ESP32-C3 code development. Download and install
the latest version of VS Code at https://code.visualstudio.com/.

4.2.5 Introduction to Third-Party Development Environments

In addition to the official ESP-IDF development environment, which primarily uses the C
language, ESP32-C3 also supports other mainstream programming languages and a wide
range of third-party development environments. Some notable options include:

Arduino:
an open-source platform for both hardware and software, supporting various microcon-
trollers, including ESP32-C3.

It uses the C++ language and offers a simplified and standardised API, commonly re-
ferred to as the Arduino language. Arduino is widely used in prototype development and
educational contexts. It provides an extensible software package and an IDE that allows
for easy compilation and flashing.

MicroPython:
a Python 3 language interpreter designed to run on embedded microcontroller platforms.

With a simple script language, it can directly access ESP32-C3’s peripheral resources (such
as UART, SPI, and I2C) and communication functions (such as Wi-Fi and Bluetooth LE).

42 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://code.visualstudio.com/

This simplifies hardware interaction. MicroPython, combined with Python’s extensive
mathematical operation library, enables the implementation of complex algorithms on
ESP32-C3, facilitating the development of AI-related applications. As a script language,
there is no need for repeated compilation; modifications can be made and scripts can be
executed directly.

NodeMCU:
an LUA language interpreter developed for ESP series chips.

It supports almost all peripheral functions of ESP chips and is lighter than MicroPython.
Similar to MicroPython, NodeMCU uses a script language, eliminating the need for re-
peated compilation.

Furthermore, ESP32-C3 also supports the NuttX and Zephyr operating systems. NuttX is a
real-time operating system that provides POSIX-compatible interfaces, enhancing applica-
tion portability. Zephyr is a small real-time operating system specifically designed for IoT
applications. It includes numerous software libraries required in IoT development, gradually
evolving into a comprehensive software ecosystem.

This book does not provide detailed installation instructions for the aforementioned develop-
ment environments. You can install a development environment based on your requirements
by following the respective documentation and instructions.

4.3 ESP-IDF Compilation System

4.3.1 Basic Concepts of Compilation System

An ESP-IDF project is a collection of a main program with an entry function and multiple
independent functional components. For example, a project that controls LED switches
mainly consists of an entry program main and a driver component that controls GPIO. If
you want to realise the LED remote control, you also need to add Wi-Fi, TCP/IP protocol
stack, etc.

The compilation system can compile, link, and generate executable files (.bin) for the code
through a set of building rules. The compilation system of ESP-IDF v4.0 and above versions
is based on CMake by default, and the compilation script CMakeLists.txt can be used to
control the compilation behavior of the code. In addition to supporting the basic syntax of
CMake, the ESP-IDF compilation system also defines a set of default compilation rules and
CMake functions, and you can write the compilation script with simple statements.

4.3.2 Project File Structure

A project is a folder that contains an entry program main, user-defined components, and
files required to build executable applications, such as compilation scripts, configuration

Chapter 4. Setting Up Development Environment 43

files, partition tables, etc. Projects can be copied and passed on, and the same executable file
can be compiled and generated in machines with the same version of ESP-IDF development
environment. A typical ESP-IDF project file structure is shown in Figure 4.14.

Figure 4.14. Typical ESP-IDF project file structure

Since ESP-IDF supports multiple IoT chips from Espressif, including ESP32, ESP32-S series,
ESP32-C series, ESP32-H series, etc., a target needs to be determined before compiling the
code. The target is both the hardware device that runs the application program and the
build target of the compilation system.

Depending on your needs, you can specify one or more targets for your project. For example,
through command idf.py set-target esp32c3, you can set the compilation target to
ESP32-C3, during which the default parameters and compilation tool chain path for ESP32-
C3 will be loaded. After compilation, an executable program can be generated for ESP32-
C3. You can also run the command set-target again to set a different target, and the
compilation system will automatically clean up and reconfigure.

Components
Components in ESP-IDF are modular and independent code units managed within the
compilation system. They are organised as folders, with the folder name representing
the component name by default. Each component has its own compilation script that

44 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

specifies its compilation parameters and dependencies. During the compilation process,
components are compiled into separate static libraries (.a files) and eventually combined
with other components to form the application program.

ESP-IDF provides essential functions, such as the operating system, peripheral drivers,
and network protocol stack, in the form of components. These components are stored
in the components directory located within the ESP-IDF root directory. Developers do
not need to copy these components to the components directory of myProject. In-
stead, they only need to specify the dependency relationships of these components in the
project’s CMakeLists.txt file using the REQUIRES or PRIV_REQUIRES directives. The
compilation system will automatically locate and compile the required components.

Therefore, the components directory under myProject is not necessary. It is only used
to include some custom components of the project, which can be third-party libraries or
user-defined code. Additionally, components can be sourced from any directory other
than ESP-IDF or the current project, such as from an open-source project saved in another
directory. In this case, you only need to add the path of the component by setting the
EXTRA_COMPONENT_DIRS variable in the CMakeLists.txt under the root directory.
This directory will override any ESP-IDF component with the same name, ensuring the
correct component is used.

Entry program main
The main directory within the project follows the same file structure as other components
(e.g., component1). However, it holds a special significance as it is a mandatory compo-
nent that must exist in every project. The main directory contains the project’s source code
and the user program’s entry point, typically named app_main. By default, the execu-
tion of the user program starts from this entry point. The main component also differs in
that it automatically depends on all components within the search path. Therefore, there
is no need to explicitly indicate dependencies using the REQUIRES or PRIV_REQUIRES
directives in the CMakeLists.txt file.

Configuration file
The root directory of the project contains a configuration file called sdkconfig, which
contains the configuration parameters for all the components within the project. The
sdkconfig file is automatically generated by the compilation system and can be modi-
fied and regenerated by the command idf.py menuconfig. The menuconfig options
mainly originate from the Kconfig.projbuild of the project and the Kconfig of the
components. Component developers generally add configuration items in Kconfig to
make the component flexible and configurable.

Build directory
By default, the build directory within the project stores intermediate files and the fi-

Chapter 4. Setting Up Development Environment 45

nal executable programs generated by the idf.py build command. In general, it is
not necessary to directly access the contents of the build directory. ESP-IDF provides
predefined commands to interact with the directory, such as using the idf.py flash

command to automatically locate the compiled binary file and flash it to the specified
flash address, or using the idf.py fullclean command to clean the entire build

directory.

Partition table (partitions.csv)
Each project requires a partition table to divide the space of flash and specify the size and
starting address of the executable program and user data space. Command idf.py

flash or OTA upgrade program will flash the firmware to the corresponding address
according to this table. ESP-IDF provides several default partition tables in components/
partition_table, such as partitions_singleapp.csv and partitions_two_

ota.csv, which can be selected in menuconfig.

If the default partition table of the system cannot meet the requirements of the project,
a custom partitions.csv can be added to the project directory and be selected in
menuconfig.

4.3.3 Default Build Rules of the Compilation System

Rules for overriding components with the same name
During the component search process, the compilation system follows a specific order.
It first searches for internal components of ESP-IDF, then looks for components of the
user project, and finally searches for components in EXTRA_COMPONENT_DIRS. In cases
where multiple directories contain components with the same name, the component
found in the last directory will override any previous components with the same name.
This rule allows for the customisation of ESP-IDF components within the user project,
while keeping the original ESP-IDF code intact.

Rules for including common components by default
As mentioned in section 4.3.2, components need to explicitly specify their dependencies
on other components in the CMakeLists.txt. However, common components such as
freertos are automatically included in the build system by default, even if their depen-
dency relationships are not explicitly defined in the compilation script. ESP-IDF common
components include freertos, Newlib, heap, log, soc, esp_rom, esp_common,
xtensa/riscv, and cxx. Using these common components avoids repetitive work when
writing CMakeLists.txt and make it more concise.

Rules for overriding configuration items
Developers can add default configuration parameters by adding a default configuration
file named sdkconfig.defaults to the project. For example, adding CONFIG_LOG_

46 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

DEFAULT_LEVEL_NONE = y can configure the UART interface to not print log data
by default. Furthermore, if specific parameters need to be set for a particular target, a
configuration file named sdkconfig.defaults.TARGET_NAME can be added, where
TARGET_NAME can be esp32s2, esp32c3, and so on. These configuration files are im-
ported into the sdkconfig during compilation, with the general default configuration
file sdkconfig.defaults being imported first, followed by the target-specific configu-
ration file, such as sdkconfig.defaults.esp32c3. In cases where there are configu-
ration items with the same name, the latter configuration file will override the former.

4.3.4 Introduction to the Compilation Script

When developing a project using ESP-IDF, developers not only need to write source code but
also need to write CMakeLists.txt for the project and components. CMakeLists.txt is
a text file, also known as a compilation script, which defines a series of compilation objects,
compilation configuration items, and commands to guide the compilation process of the
source code. The compilation system of ESP-IDF v4.3.2 is based on CMake. In addition
to supporting native CMake functions and commands, it also defines a series of custom
functions, making it much easier to write compilation scripts.

The compilation scripts in ESP-IDF mainly include the project compilation script and the
component compilation scripts. The CMakeLists.txt in the root directory of the project
is called the project compilation script, which guides the compilation process of the entire
project. A basic project compilation script typically includes the following three lines:

1. cmake_minimum_required(VERSION 3.5)

2. include($ENV{IDF_PATH}/tools/cmake/project.cmake)

3. project(myProject)

Among them, the cmake_minimum_required (VERSION 3.5) must be placed on the
first line, which is used to indicate the minimum CMake version number required by the
project. Newer versions of CMake are generally backward compatible with older versions,
so adjust the version number accordingly when using newer CMake commands to ensure
compatibility.

include($ENV {IDF_PATH}/tools/cmake/project.cmake) imports pre-defined
configuration items and commands of ESP-IDF compilation system, including the default
build rules of the compilation system described in Section 4.3.3. project(myProject)
creates the project itself and specifies its name. This name will be used as the final output
binary file name, i.e., myProject.elf and myProject.bin.

A project can have multiple components, including the main component. The top-level di-
rectory of each component contains a CMakeLists.txt file, which is called the component
compilation script. Component compilation scripts are mainly used to specify component
dependencies, configuration parameters, source code files, and included header files for

Chapter 4. Setting Up Development Environment 47

compilation. With ESP-IDF’s custom function idf_component_register, the minimum
required code for a component compilation script is as follows:

1. idf_component_register(SRCS "src1.c"

2. INCLUDE_DIRS "include"

3. REQUIRES component1)

The SRCS parameter provides a list of source files in the component, separated by spaces if
there are multiple files. The INCLUDE_DIRS parameter provides a list of public header file
directories for the component, which will be added to the include search path for other
components that depend on the current component. The REQUIRES parameter identifies the
public component dependencies for the current component. It is necessary for components
to explicitly state which components they depend on, such as component2 depending on
component1. However, for the main component, which depends on all components by
default, the REQUIRES parameter can be omitted.

In addition, native CMake commands can also be used in the compilation script. For exam-
ple, use the command set to set variables, such as set(VARIABLE "VALUE").

4.3.5 Introduction to Common Commands

ESP-IDF uses CMake (project configuration tool), Ninja (project building tool) and esptool
(flash tool) in the process of code compilation. Each tool plays a different role in the com-
pilation, building, and flash process, and also supports different operating commands. To
facilitate user operation, ESP-IDF adds a unified front-end idf.py that allows the above
commands to be called quickly.

Before using idf.py, make sure that:

• The environment variable IDF_PATH of ESP-IDF has been added to the current terminal.
• The command execution directory is the root directory of the project, which includes the

project compilation script CMakeLists.txt.

The common commands of idf.py are as follows:

• idf.py --help: displaying a list of commands and their usage instructions.
• idf.py set-target <target>: setting the compilation taidf.py fullcleanrget, such

as replacing <target> with esp32c3.
• idf.py menuconfig: launching menuconfig, a terminal graphical configuration

tool, which can select or modify configuration options, and the configuration results
are saved in the sdkconfig file.

• idf.py build: initiating code compilation. The intermediate files and the final exe-
cutable program generated by the compilation will be saved in the build directory of
the project by default. The compilation process is incremental, which means that if only
one source file is modified, only the modified file will be compiled next time.

48 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

• idf.py clean: cleaning the intermediate files generated by the project compilation.
The entire project will be forced to compile in the next compilation. Note that the CMake
configuration and the configuration modifications made by menuconfig will not be
deleted during cleanup.

• idf.py fullclean: deleting the entire build directory, including all CMake config-
uration output files. When building the project again, CMake will configure the project
from scratch. Please note that this command will recursively delete all files in the build
directory, so use it with caution, and the project configuration file will not be deleted.

• idf.py flash: flashing the executable program binary file generated by build to
the target ESP32-C3. The options -p <port_name> and -b <baud_rate> are used
to set the device name of the serial port and the baud rate for flashing, respectively. If
these two options are not specified, the serial port will be automatically detected and the
default baud rate will be used.

• idf.py monitor: displaying the serial port output of the target ESP32-C3. The option
-p can be used to specify the device name of the host-side serial port. During serial port
printing, press the key combination Ctrl+] to exit the monitor.

The above commands can also be combined as needed. For example, the command idf.py
build flash monitor will perform code compilation, flash, and open the serial port
monitor in sequence.

You can visit https://bookc3.espressif.com/build-system to know more about ESP-IDF com-
pilation system.

4.4 Practice: Compiling Example Program “Blink”

4.4.1 Example Analysis

This section will take the program Blink as an example to analyse the file structure and
coding rules of a real project in detail. The Blink program implements the LED blinking
effect, and the project is located in the directory examples/get-started/blink, which
contains a source file, configuration files, and several compilation scripts.

The smart light project introduced in this book is based on this example program. Functions
will be gradually added in later chapters to finally complete it.

Source code

In order to demonstrate the entire development process, the Blink program has been
copied to esp32c3-iot-projects/device firmware/1 blink.

The directory structure of the blink project files is shown in Figure 4.15.

The blink project contains only one main directory, which is a special component that

Chapter 4. Setting Up Development Environment 49

https://bookc3.espressif.com/build-system
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/1_blink

Figure 4.15. File directory structure of the blink project

must be included as described in section 4.3.2. The main directory is mainly used to store
the implementation of the app_main() function, which is the entry point to the user pro-
gram.The blink project does not include the components directory, because this example
only needs to use the components that come with ESP-IDF and does not require additional
components. The CMakeLists.txt included in the blink project is used to guide the
compilation process, while Kconfig.projbuild is used to add configuration items for
this example program in menuconfig. Other unnecessary files will not affect the compila-
tion of the code, so they will not be discussed here. A detailed introduction to the blink

project files is as follows.
1. /*blink.c includes the following header files*/

2. #include <stdio.h> //Standard C library header file

3. #include "freertos/freeRTOS.h" //FreeRTOS main header file

4. #include "freertos/task.h" //FreeRTOS Task header file

5. #include "sdkconfig.h" //Configuration header file generated by kconfig

6. #include "driver/gpio.h" //GPIO driver header file

The source file blink.c contains a series of header files corresponding to function declara-
tions. ESP-IDF generally follows the order of including standard library header files, FreeR-
TOS header files, driver header files, other component header files, and project header files.
The order in which header files are included may affect the final compilation result, so try to
follow the default rules. It should be noted that sdkconfig.h is automatically generated
by kconfig and can only be configured through the command idf.py menuconfig.
Direct modification of this header file will be overwritten.
1. /*You can select the GPIO corresponding to the LED in idf.py menuconfig,

and the modification result of menuconfig is that the value of CONFIG_BLINK

_GPIO will be changed. You can also directly modify the macro definition

here, and change CONFIG_BLINK_GPIO to a fixed value.*/

2. #define BLINK_GPIO CONFIG_BLINK_GPIO

3. void app_main(void)

4. {

5. /*Configure IO as the GPIO default function, enable pull-up mode, and

6. disable input and output modes*/

7. gpio_reset_pin(BLINK_GPIO);

50 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

8. /*Set GPIO to output mode*/

9. gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);

10. while(1) {

11. /*Print log*/

12. printf("Turning off the LED\n");

13. /*Turn off the LED (output low level)*/

14. gpio_set_level(BLINK_GPIO, 0);

15. /*Delay (1000 ms)*/

16. vTaskDelay(1000 / portTICK_PERIOD_MS);

17. printf("Turning on the LED\n");

18. /*Turn on the LED (output high level)*/

19. gpio_set_level(BLINK_GPIO, 1);

20. vTaskDelay(1000 / portTICK_PERIOD_MS);

21. }

22. }

The app_main() function in the Blink example program serves as the entry point for user
programs. It is a simple function with no parameters and no return value. This function is
called after the system has completed initialisation, which includes tasks such as initialising
the log serial port, configuring single/dual core, and configuring the watchdog.

The app_main() function runs in the context of a task named main. The stack size and
priority of this task can be adjusted in menuconfig → Componentconfig → Common

ESP-related.

For simple tasks like blinking an LED, all the necessary code can be implemented directly
in the app_main() function. This typically involves initialising the GPIO corresponding to
the LED and using a while(1) loop to toggle the LED on and off. Alternatively, you can
use FreeRTOS API to create a new task that handles the LED blinking. Once the new task is
successfully created, you can exit the app_main() function.

The content of main/CMakeLists.txt file, which guides the compilation process for the
main component, is as follows:

1. idf_component_register(SRCS "blink.c" INCLUDE_DIRS ".")

Among them, main/CMakeLists.txt only calls one compilation system function, that
is idf_component_register. Similar to the CMakeLists.txt for most other compo-
nents, blink.c is added to SRCS, and the source files added to SRCS will be compiled.
At the same time, “.”, which represents the path where CMakeLists.txt is located,
should be added to INCLUDE_DIRS as the search directories for header files. The content
of CMakeLists.txt is as follows:
1. #Specify v3.5 as the oldest CMake version supported by the current project

2. #Versions lower than v3.5 must be upgraded before compilation continues

3. cmake_minimum_required(VERSION 3.5)

4. #Include the default CMake configuration of the ESP-IDF compilation system

Chapter 4. Setting Up Development Environment 51

5. include($ENV{IDF_PATH}/tools/cmake/project.cmake)

6. #Create a project named "blink"

7. project(myProject)

Among them, the CMakeLists.txt in the root directory mainly includes $ENV{IDF_
PATH}/tools/cmake/project.cmake, which is the main CMake configuration file pro-
vided by ESP-IDF. It is used to configure the default rules of the ESP-IDF compilation system
and define common functions such as idf_component_register; project(blink)
creates a project called blink, and the final firmware will be named blink.bin.

4.4.2 Compiling the Blink Program

This section takes the Blink program as an example to demonstrate the compilation process
of a simple ESP-IDF program. It is important to note that this section uses the high/low level
of GPIO to drive the LED. However, the WS2812 indicator light requires a special communi-
cation protocol. You can refer to the example program in esp-idf/examples/periphe-
rals/rmt/led strip for more information.

1. Open a new terminal and import the ESP-IDF environment variables

For Linux and Mac systems, use cd ⇠/esp/esp-idf to navigate to the ESP-IDF folder.
Then, import the ESP-IDF environment variables using the command . ./export.sh.
This process also performs a complete integrity check of the development environment.

TIPS

Please note that the dot before the space should not be omitted in . ./export.sh.
The dot is equivalent to the source directive, which refers to executing the script and
changing the environment variables in the current shell.

Figure 4.16. Automatic addition of environment variables in Windows system

52 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf/tree/master/examples/peripherals/rmt/led_strip
https://github.com/espressif/esp-idf/tree/master/examples/peripherals/rmt/led_strip

For Windows systems, you can directly find and open ESP-IDF 4.3 CMD or ESP-IDF 4.3
PowerShell in the program list. After the terminal is opened, the environment variables will
be automatically added, as shown in Figure 4.16.

2. Navigate to the root directory of the blink project

Before compiling the project, navigate to the root directory of the project. To do this, use
the command cd examples/get-started/blink.

3. Set the compilation target to ESP32-C3

Use the command idf.py set-target esp32c3 to set the compilation target to ESP32-
C3, as shown in Figure 4.17. If this step is skipped, the compilation target defaults to ESP32.

Figure 4.17. Set the compilation target to ESP32-C3

4. Configure GPIOs

Use the command idf.py menuconfig to enter the configuration interface. Navigate
using the up/down keys and press Enter key to enter the Example Configuration. Enter
a number to change the GPIO to the specified pin, as shown in Figure 4.18. Save the
configuration by following the prompts.

5. Build the code

Use the command idf.py build to build the code. The code building process is shown
in Figure 4.19. Relevant prompts and flash commands will be printed once the build is
complete, as shown in Figure 4.20.

Chapter 4. Setting Up Development Environment 53

Figure 4.18. Configure GPIO using menuconfig

Figure 4.19. Code compilation process

Figure 4.20. Prompt after code compilation is complete

54 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

4.4.3 Flashing the Blink Program

For Linux systems, connect the ESP32-C3 to the computer via USB-UART chip (such as
CP2102), and use the command ls /dev/ttyUSB* to view the serial port number. If the
current serial port number printed is /dev/ttyUSB0, use the command idf.py -p /dev

/ttyUSB0 flash to flash the program onto the ESP32-C3.

For Mac systems, connect the ESP32-C3 to the computer via USB-UART chip (such as
CP2102), and use the command ls /dev/cu.* to view the serial port number. If the cur-
rent serial port number printed is /dev/cu.SLAB_USBtoUART, use the command idf.py
-p /dev/cu.SLAB_USBtoUART flash to flash the program onto the ESP32-C3.

For Windows systems, connect the ESP32-C3 to the computer via USB-UART chip (such as
CP2102), and view the serial port number through the device manager. If the current serial
port number is COM5, use the command idf.py -p COM5 flash to flash the program
onto the ESP32-C3.

After the flashing process is completed, you will see a prompt as shown in Figure 4.21 in the
console. When the following log appears, the code will start executing, and the LED on the
development board will start flashing.

Hard resetting via RTS pin...

Done

Figure 4.21. Prompt in the console after flashing is completed

Chapter 4. Setting Up Development Environment 55

4.4.4 Serial Port Log Analysis of the Blink Program

Once the firmware compilation and download are completed, navigate to the project folder,
and run the command idf.py monitor. This will open a monitor with coloured font. The
monitor will output the serial port log of the target ESP32-C3. The content is divided into
three parts by default: first-level bootloader information, second-level bootloader infor-
mation, and user program output. During the output of log, you can press the Ctrl+]

key combination to exit the log output.
ESP-ROM:esp32c3-api1-20210207

Build:Feb 7 2021

rst:0x1 (POWERON),boot:0xc (SPI_FAST_FLASH_BOOT)

SPIWP:0xee

mode:DIO, clock div:1

load:0x3fcd6100,len:0x1798

load:0x403ce000,len:0x8dc

load:0x403d0000,len:0x2984

entry 0x403ce000

First-level bootloader information

By default, the first-level bootloader information is output from UART and cannot be turned
off through configuration in ESP-IDF version 4.3.2. This information includes the ROM code
version information fixed internally in the chip. Different chips in the same series may
have different ROM code versions due to ROM repairs and feature expansions. It also in-
cludes the reason for the chip restart, such as rst:0x1 indicating power-on restart of the
chip, rst:0x3 indicating software-triggered restart, rst:0x4 indicating software excep-
tion restart, etc. You can use this information to assess the status of the chip. Additionally,
it provides details about the chip’s boot mode, such as boot:0xc indicating SPI Flash Boot
mode (normal operation mode, in which the code in flash is loaded and executed), and
boot:0x4 indicating Flash Download mode, in which the content of flash can be erased
and programmed.

Second-level bootloader information

The output of second-level bootloader information can be disabled by setting menuconfig
(Top) → Bootloader config → Bootloader log verbosity to No output.

This information mainly includes the ESP-IDF version, flash operating mode and speed,
system partition and stack allocation, as well as the application name and version.
I (30) boot: ESP-IDF v4.3.2-1-g887e7c0c73-dirty 2nd stage bootloader

I (30) boot: compile time 18:27:35

I (30) boot: chip revision: 3

I (34) boot.esp32c3: SPI Speed : 80MHz

56 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

I (38) boot.esp32c3: SPI Mode : DIO

I (43) boot.esp32c3: SPI Flash Size : 2MB

I (48) boot: Enabling RNG early entropy source...

I (53) boot: Partition Table:

I (57) boot: ## Label Usage Type ST Offset Length

I (64) boot: 0 nvs WiFi data 01 02 00009000 00006000

I (72) boot: 1 phy_init RF data 01 01 0000f000 00001000

I (79) boot: 2 factory factory app 00 00 00010000 00100000

I (86) boot: End of partition table
I (91) esp_image: segment 0: paddr=00010020 vaddr=3c020020 size=06058h (24664) map
I (103) esp_image: segment 1: paddr=00016080 vaddr=3fc89c00 size=01a88h (6792) load
I (109) esp_image: segment 2: paddr=00017b10 vaddr=40380000 size=08508h (34056) load
I (122) esp_image: segment 3: paddr=00020020 vaddr=42000020 size=15c54h (89172) map
I (138) esp_image: segment 4: paddr=00035c7c vaddr=40388508 size=0157ch (5500) load
I (139) esp_image: segment 5: paddr=00037200 vaddr=50000000 size=00010h (16) load

I (147) boot: Loaded app from partition at offset 0x10000

I (150) boot: Disabling RNG early entropy source...

I (166) cpu_start: Pro cpu up.

I (179) cpu_start: Pro cpu start user code

I (179) cpu_start: cpu freq: 160000000

I (179) cpu_start: Application information:

I (182) cpu_start: Project name: blink

I (186) cpu_start: App version: v4.3.2-1-g887e7c0c73-dirty

I (193) cpu_start: Compile time: Jan 26 2022 18:27:31

I (199) cpu_start: ELF file SHA256: dadcae8e7bb964ab...

I (205) cpu_start: ESP-IDF: v4.3.2-1-g887e7c0c73-dirty

I (212) heap_init: Initializing. RAM available for dynamic allocation:

I (219) heap_init: At 3FC8C4D0 len 00033B30 (206 KiB): DRAM

I (225) heap_init: At 3FCC0000 len 0001F060 (124 KiB): STACK/DRAM

I (232) heap_init: At 50000010 len 00001FF0 (7 KiB): RTCRAM

I (238) spi_flash: detected chip: generic

I (243) spi_flash: flash io: dio

W (247) spi_flash: Detected size(4096k) larger than the size in the binary image

header(2048k). Using the size in the binary image header.

I (260) sleep: Configure to isolate all GPIO pins in sleep state

I (267) sleep: Enable automatic switching of GPIO sleep configuration

I (274) cpu_start: Starting scheduler.

User program output

The user program output includes all information that is printed using the printf() func-
tion, which is the standard output function in the C language, or the ESP_LOG() func-
tion, which is a custom output function provided by ESP-IDF. It is recommended to use
ESP_LOG() because it allows you to specify the log level for better organisation and filter-
ing of logs.

You can configure which logs above a certain level are output through menuconfig(Top)

Chapter 4. Setting Up Development Environment 57

→ Component config → Log output. This allows you to control the verbosity of the
logs and customise the level of detail that is displayed during runtime.

I (278) gpio: GPIO[5]| InputEn: 0| OutfgputEn: 0| OpenDrain: 0| Pullup: 1|

Pulldown: 0| Intr:0

Turning off the LED

Turning on the LED

Turning off the LED

Turning on the LED

In addition to log output, idf.py monitor can also parse system exceptions and trace
software errors. For example, when the application crashes, the following register dump
and traceback information will be generated:
Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was

unhandled.

Register dump:

PC : 0x400f360d PS : 0x00060330 A0 : 0x800dbf56 A1 : 0x3ffb7e00

A2 : 0x3ffb136c A3 : 0x00000005 A4 : 0x00000000 A5 : 0x00000000

A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 : 0x3ffb7dd0

A10 : 0x00000003 A11 : 0x00060f23 A12 : 0x00060f20 A13 : 0x3ffba6d0

A14 : 0x00000047 A15 : 0x0000000f SAR : 0x00000019 EXCCAUSE : 0x0000001d

EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT : 0x00000000

Backtrace: 0x400f360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbf5e:0x3ffb7e40

0x400dbf82:0x3ffb7e60 0x400d071d:0x3ffb7e90

Based on the register address, the IDF monitor will query the compiled ELF file and trace
the code call process when the application crashes, outputting the function call information
to the monitor:
Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was

unhandled.

Register dump:

PC : 0x400f360d PS : 0x00060330 A0 : 0x800dbf56 A1 : 0x3ffb7e00

0x400f360d: do_something_to_crash at /home/gus/esp/32/idf/examples/get-started/

hello_world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello

_world/main/./hello_world_main.c:52

A2 : 0x3ffb136c A3 : 0x00000005 A4 : 0x00000000 A5 : 0x00000000

A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 : 0x3ffb7dd0

A10 : 0x00000003 A11 : 0x00060f23 A12 : 0x00060f20 A13 : 0x3ffba6d0

A14 : 0x00000047 A15 : 0x0000000f SAR : 0x00000019 EXCCAUSE : 0x0000001d

EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT : 0x00000000

Backtrace: 0x400f360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbf5e:0x3ffb7e40

0x400dbf82:0x3ffb7e60 0x400d071d:0x3ffb7e90

0x400f360d: do_something_to_crash at /home/gus/esp/32/idf/examples/get-started/

hello_world/main/./hello_world_main.c:57

58 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello

_world/main/./hello_world_main.c:52

0x400dbf56: still_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello

_world/main/./hello_world_main.c:47

0x400dbf5e: dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_world/

main/./hello_world_main.c:42

0x400dbf82: app_main at /home/gus/esp/32/idf/examples/get-started/hello_world/

main/./hello_world_main.c:33

0x400d071d: main_task at /home/gus/esp/32/idf/components/esp32/./cpu_start.c:254

The trace information of the monitor shows that the application crashes in the function
do_something_to_crash(), which is called by the function app_main() → dont_

crash() → still_dont_crash() → inner_dont_crash() → do_something

_to_crash(). Based on this, the input/output parameters of each link can be checked to
determine the cause of the crash.

4.5 Summary
In this chapter, we have covered the setup of the official software development environment,
ESP-IDF, for ESP32-C3. We have introduced the code resources and file structure of ESP-IDF
and provided a demonstration of the ESP-IDF project structure, compilation system, and
related development tools using a simple example.

By following the instructions in this chapter, you can start developing with ESP-IDF for
simple projects. However, for more specific and advanced compilation requirements, it is
recommended to refer to both the ESP-IDF official documentation and the CMake official
documentation.

Chapter 4. Setting Up Development Environment 59

Chapter
5

Hardware Design of Smart
Light Products based on
ESP32-C3

In this chapter, we will first introduce the main components of smart light products and their
application scenarios, and take LED smart lights as an example to demonstrate their major
hardware blocks. Then, we will use ESP32-C3 chips and modules to design a smart light
product capable of dimming, colour changing, and wireless communication. The design
provided in this chapter can also be extended and applied to various LED products such as
light strips, ceiling lights, spotlights, etc.

5.1 Features and Composition of Smart Light Products
Smart light products generally use LEDs as light sources. LEDs are solid-state light sources
and semiconductor light devices, characterised by low power consumption and long lifes-
pan, easy to control, and pollution-free. Compared with traditional lighting products, they
have higher efficiency of light energy conversion. At the same time, smart light products
have wireless connectivity functionality, supporting connection to wireless routers or smart
gateways through Wi-Fi, Bluetooth LE, or ZigBee, and then connection to the Internet or
cloud servers. You can not only use smartphones, tablets, smart speakers that support voice
control, and smart control panels to adjust their brightness and colour, as well as setting
timers for turning on/off the lights. You can also group multiple lights together and control
their brightness and colour in batch. You can pre-set lighting scenes for different occasions,
such as “theatre mode” for dimming the ambient lighting, “reading mode” for a soft and
eye-friendly brightness, “music mode” for colour changing and light blinking following the
beat of the music, and “sleep mode” for turning off all the lights except the night lamp. The
structure of a smart light system is shown in Figure 5.1.

From the description above, we can see that the main features of smart light products is
to be controlled through wireless connection. Now we will take the colour-changing smart
LED light as an example to explain the main components of smart light products and how
to control them.

Figure 5.2 shows the structure of a smart LED bulb, including an E27 standard lamp holder,

61

Figure 5.1. Structure of smart light system

a plastic-wrapped aluminium lamp body, a power supply & an LED driver board, a Wi-Fi
module, LED beads & an aluminium substrate, and a highly transparent lampshade. Com-
pared with traditional LED bulbs, a smart LED bulb has an additional Wi-Fi module. So how
does this Wi-Fi module help control the light wirelessly? The following sections will further
elaborate on the functional implementation.

Figure 5.2. Structure of smart LED bulb

Figure 5.3 shows the functional block diagram of a smart LED bulb, which mainly includes
a 220 V AC-DC power supply module, a constant-current LED driver, a 3.3 V output auxil-

62 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

iary power supply, a PWM control and wireless communication module, and LED beads of
various colours.

Figure 5.3. Block diagram of functional units for smart LED bulb

Before detailing each functional unit, let’s first take a glance at how they manage to change
the brightness and colour of the lighting as a whole. The key lies in the LED lamp beads.

LED lamp beads can be dimmed in two ways: analogue dimming and digital dimming. Ana-
logue dimming changes LED light output by simply adjusting the DC current in the circuit;
while digital dimming, also known as PWM dimming, is achieved by varying the conduction
time of forward current through turning on/off LEDs using PWM signals of different pulse
widths. Section 6.3.3 will describe PWM dimming in detail. Here we will briefly introduce
PWM dimming using PWM signals.

When using a controllable constant-current source to drive LED beads, to adjust colour
temperature, you can change the duty cycles of PWM signals on two channels to adjust the
current of warm-white (WW) and cool-white (CW) LED beads; to adjust light colours, you
can change the duty cycles of PWM signals on three channels to adjust the brightness of
corresponding colours so that the smart LED light emits the mixed colour of different lamp
beads.

Knowing the basics of light dimming and colour change, now let’s dig into the functional
units one by one.

220 V AC-DC power supply
The input power of smart LED lights is usually high-voltage AC, and the standard house-
hold AC in China is 220 V. The 220 V AC-DC power module first converts the AC to DC
through a rectifier bridge, and then reduces it to 18 ⇠ 40 V for the constant-current LED

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 63

drivers. Since the operating voltage of the PWM control and wireless communication
module is 3.3 V, there is another auxiliary power supply to reduce the DC power to 3.3 V.

Constant-current LED driver
To ensure consistency in the emission of multiple LED beads, you can use a series circuit
and drive the LEDs with a constant current source. The brightness of the LEDs can be
adjusted by controlling the constant current source using PWM signals. Constant-current
LED driver 1 is used to drive the LEDs in cool white (CW) and warm white (WW), and the
output power is relatively higher; constant-current LED driver 2 is used to drive red (R) /
green (G) / blue (B) LEDs, mainly for changing colours, and the output power is lower.

LED beads
In smart LED lights, there are usually warm-white, cool-white, red, green, and blue LED
beads, among which more warm-white and cool-white beads are used for lighting, and
less red, green or blue beads for colour adjustment.

PWM control and wireless communication
In smart light products, to realise PWM control and wireless communication functions,
a highly-integrated system-on-a-chip (SoC) is usually used. SoC supports multiple PWM
signal outputs, as well as one or more mainstream wireless communication protocols such
as Wi-Fi, Bluetooth LE, or ZigBee. It can run embedded RTOS, and supports software
application development. With chips of Wi-Fi connectivity, you can connect your product
to the Internet and cloud servers through a Wi-Fi router; with chips of Bluetooth LE or
ZigBee functions, you need to configure a gateway device to connect to an Ethernet or
Wi-Fi router first and then get it connected to the Internet and cloud servers.

The introduction above explains the main components of smart LED lights, as well as the
realisation of dimming and colour change functions. It can be concluded that the biggest
difference between smart light products and ordinary light products lies in the use of PWM
control and wireless communication. The following sections of this chapter will focus on
how to design the minimal hardware system based on the ESP32-C3 chip to realise PWM
dimming, colour change, and wireless communication. The design is also applicable to other
types of smart light products such as spotlights, ceiling lights, lamps, light strips, etc.

5.2 Hardware Design of ESP32-C3 Core System
Through Section 5.1, we can see that the PWM control and wireless communication module
is the core unit of smart light products, which distinguishes them from traditional light
products. Then how should we design this core system to implement the functions of smart
light products? In this section, we’ll use the ESP32-C3 chip to demonstrate its hardware
design.

64 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

ESP32-C3 is a highly-integrated SoC equipped with a 32-bit RISC-V processor, supporting
2.4 GHz Wi-Fi and Bluetooth LE connectivity. The functional block diagram of ESP32-C3 is
shown in Figure 5.4.

Figure 5.4. Block diagram of ESP32-C3 functions

ESP32-C3 has the following features:

• A 32-bit RISC-V single-core processor with a four-stage pipeline which operates at up
to 160 MHz.

• A complete Wi-Fi subsystem which complies with IEEE 802.11b/g/n protocol and
supports Station mode, SoftAP mode, SoftAP + Station mode, and promiscuous mode.

• A Bluetooth LE subsystem which supports Bluetooth 5 and Bluetooth mesh.

• Storage capacities ensured by 400 KB SRAM and 384 KB ROM on the chip, and SPI,
Dual SPI, Quad SPI, and QPI interfaces that allow connection to external flash.

• Reliable security mechanisms ensured by cryptographic hardware accelerators that
support AES-128/256, Hash, RSA, HMAC, digital signature and secure boot, external
memory encryption and decryption, random number generator, and permission control
on accessing internal memory, external memory, and peripherals.

• A rich set of peripheral interfaces which are ideal for various scenarios and complex
applications; 22 programmable GPIOs that can be configured flexibly to support LED
PWM, UART, I2C, SPI, I2S, ADC, TWAI, RMT, and USB Serial/JTAG applications.

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 65

The ESP32-C3 series of chips has several variants, including the version with in-package SPI
flash. ESP8685 is a small package version of ESP32-C3, as shown in Table 5.1.

Table 5.1. ESP32-C3 series

MPN Flash (MB) Temp (°C) Size (mm)

ESP32-C3 — –40 ⇠ 105 QFN32 (5×5)

ESP32-C3-FN4 4 –40 ⇠ 85 QFN32 (5×5)

ESP32-C3-FH4 4 –40 ⇠ 105 QFN32 (5×5)

ESP32-C3-FH4AZ 4 –40 ⇠ 105 QFN32 (5×5)

ESP8685H2 2 –40 ⇠ 105 QFN32 (4×4)

ESP8685H4 4 –40 ⇠ 105 QFN32 (4×4)

NOTE

• For ESP32-C3FH4AZ, ESP8685H2, and ESP8685H4, pins for flash connection are not
bonded.
• Nomenclature of ESP32-C3 series: F stands for in-package flash, H/N indicates the flash
temperature, and AZ is other identification code.

The core circuit for ESP32-C3 requires about 20 resistors, capacitors, and inductors in total,
as well as one crystal and one SPI flash. The high integration of ESP32-C3 makes it suitable
for small-sized applications such as smart light products. Figure 5.5 and Figure 5.6 show
the block diagram and the schematic of ESP32-C3 core circuit.

Figure 5.5. Block diagram of ESP32-C3 core circuit

The following explains in detail the schematics and PCB layout of ESP32-C3.

66 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 5.6. Schematic of ESP32-C3 core circuit

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 67

5.2.1 Power Supply

Pin 11 and pin 17 are the power supply pins for RTC IO and CPU IO respectively, in a
voltage range of 3.0 V ⇠ 3.6 V. We recommend adding a 0.1 µF capacitor close to each
power supply pin. When working as an output power supply pin, VDD SPI (pin 18) mainly
powers external SPI flash. We recommend adding a 1 µF filter capacitor between VDD SPI
and ground. When VDD SPI works as the power supply pin for in-package flash or external
3.3 V flash, the voltage of VDD3P3 CPU should be maintained at 3.0 V or above, to ensure
the flash’s operation.

Pin 2, pin 3, pin 31, and pin 32 are the analogue power supply pins, working at 3.0 V ⇠
3.6 V. Please note that when ESP32-C3 works in transmission (TX) mode, the instantaneous
current will be higher and may cause power rail collapse. Therefore, it is highly recom-
mended to add a 10 µF capacitor to the power trace, which can work in conjunction with
the 0.1 µF capacitor. In addition, an LC filter circuit needs to be added near pin 2 and pin
3 to suppress high-frequency harmonics. The inductor’s rated current is preferably 500 mA
or above. Refer to the core circuit schematic and place the appropriate decoupling capacitor
near each analogue power pin.

For a single power supply, the recommended voltage is 3.3 V, and the recommended output
current is 500 mA or above. We also suggest adding an ESD protection diode at the power
entrance.

5.2.2 Power-on Sequence and System Reset

ESP32-C3 uses a 3.3 V system power supply. The chip should be activated after the power
rails have stabilised. This is achieved by delaying the activation of pin 7 CHIP EN after
the 3.3 V rails have been brought up. Figure 5.7 shows the power-up and reset timing of
ESP32-C3. Details about the parameters are listed in Table 5.2.

Figure 5.7. ESP32-C3 power-up and reset timing

To ensure that the power supply to ESP32-C3 is stable during power-up, it is advised to add
an RC delay circuit at the CHIP EN pin. The recommended setting for the RC delay circuit

68 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Table 5.2. Parameter description of ESP32-C3 power-up and reset timing

Parameter Description Min.

t0
Time between bringing up the VDDA, VDD3P3, VDD3P3 RTC, and
VDD3P3 CPU rails, and activating CHIP EN

50 µs

t1 Duration of CHIP EN signal level < VIL nRST to reset the chip 50 µs

is usually R = 10k⌦ and C = 1µF , while specific parameters should be adjusted based on
the power-up timing of the power supply and the power-up and reset sequence timing of
the chip.

CHIP EN can also be used as the reset pin of ESP32-C3. When CHIP EN is at low level, the
reset voltage (VIL nRST) should be (–0.3 ⇠ 0.25) × VDD (where VDD is the I/O voltage for
a particular power domain of pins). To avoid reboots caused by external interference, route
the CHIP EN trace as short as possible, and add a pull-up resistor as well as a capacitor to
ground. Note that CHIP EN pin must not be left floating.

5.2.3 SPI Flash

ESP32-C3 supports external flash of up to 16 MB, which is mainly used for storing program
firmware, system parameters, user parameters, user data, etc. The SPI flash is powered
by VDD SPI. We recommend reserving a serial resistor (initially of 0 ⌦) on the SPI line,
to lower the driving current, adjust timing, reduce crosstalk and external interference, etc.
ESP32-C3FH4/FN4 has an in-package 4 MB SPI flash.

5.2.4 Clock Source

Currently, the ESP32-C3 firmware supports 40 MHz crystal. The specific capacitance of C1
and C2 depends on further testing of, and adjustment to, the overall performance of the
whole circuit. Please add a component (i.e., R1 in Figure 5.6) in series on the XTAL P clock
trace to minimise the impact of crystal harmonics on RF performance. The value of this
component (initially of 24 nH) depends on further RF testing. Note that the accuracy of
the selected crystal needs to be ±10 ppm. In actual use, as the temperature of smart light
products rises, the frequency deviation of the crystal will also increase. Therefore, please
ensure that the frequency deviation of the crystal does not exceed 25 ppm, so as not to affect
Wi-Fi communication.

Although ESP32-C3 has integrated an RC oscillator as the RTC clock source, it also sup-
ports an external 32.768 kHz crystal to act as the RTC clock source. Figure 5.8 shows the
schematic of the external 32.768 kHz crystal.

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 69

Figure 5.8. Schematic of ESP32-C3’s external crystal (RTC)

NOTE

• Requirements for the 32.768 kHz crystal:
- Equivalent series resistance (ESR) 70 k⌦.
- Load capacitance at both ends should be configured according to the crystal’s specifi-
cation.

• The parallel resistor R10 is used for biasing the crystal circuit (5M⌦ < R10 10M⌦).
In general, you do not need to populate R10.
• If the RTC source is not required, then pin 4 (XTAL 32K P) and pin 5 (XTAL 32K N) can
be used as normal GPIOs.

5.2.5 RF and Antenna

In your circuit design, please add a ⇡-matching network between the RF port (LNA IN) and
the antenna, for antenna matching purpose. A CLC network is preferred, as shown in Figure
5.9. The parameters of C8, L2, and C9 in the matching network are subject to the actual
antenna and PCB layout.

Figure 5.9. CLC circuit for ESP32-C3 RF matching

The antenna can be selected based on product design and the overall cost. You can choose
PCB onboard antenna, or an external antenna such as rod antenna, FPC antenna, ceramic
antenna, 3D metal antenna, etc. Commonly-used antenna types are shown in Figure 5.10.
Their installation methods and characteristics are provided in Table 5.3.

70 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 5.10. Commonly-used antenna types

Table 5.3. Installation methods and characteristics of commonly-used antenna types

Antenna Type Installation Methods Characteristics

PCB
onboard antenna

PCB onboard
Low cost, medium gain, usually integrated on
modules

Rod antenna
External connection

through I-PEX
connector

High cost, high gain, less susceptible to inter-
ference, good omni-directional performance

FPC antenna Adhesive installation
Medium cost, medium gain, can be adhered
to the package, suitable for products with re-
stricted structure

Ceramic antenna PCB mounting
Medium cost, low gain, small size, suitable for
small-sized modules

3D metal antenna PCB mounting
High cost, high gain, less susceptible to inter-
ference, good omni-directional performance

The RF performance can be optimised through antenna matching. After matching, you
can use CMW500, WT-200, IQ View, IQ Xel or other comprehensive RF testers to test RF
performance of the ESP32-C3 core board. RF test includes conducted test and radiatied test.

Conducted test
In conducted tests, use a 50 ⌦ RF cable to connect the RF output port of the ESP32-
C3 core board to the tester’s RF port, and run the RF test software on the PC. Through
the software, you can communicate with the ESP32-C3 core board and the tester, thus
controlling the test. The conducted test set-up is shown in Figure 5.11.

Radiated test
When performing a radiated test, place the tester’s antenna and ESP32-C3 board’s antenna
close to each other in the shield box. It is recommended that the distance between the
two antennas be about 10 cm. Control the test through PC software. The radiated test
set-up is shown in Figure 5.12.

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 71

Figure 5.11. Conducted test set-up for ESP32-C3 core board

Figure 5.12. Radiated test set-up for ESP32-C3 core board

For Wi-Fi RF performance test, the primary test parameters are target transmit power, EVM,
receiver sensitivity, and frequency error, as shown in Table 5.4.

Table 5.4. Key parameters for Wi-Fi RF test

Working Mode and Rate
Target TX

Power (dBm)
EVM (dB)

Receiver Sen-
sitivity (dBm)

Frequency
Error (ppm)

IEEE 802.11b, 1 Mbit/s 21.0±2.0 < �24.5 < �98 ±25

IEEE 802.11g, 54 Mbit/s 19.0±2.0 < �27.5 < �76.2 ±20

IEEE 802.11n, MCS7 HT20 18.5±2.0 < �29 < �74.4 ±20

IEEE 802.11n, MCS7 HT40 18.5±2.0 < �28 < �71.2 ±20

Figure 5.13 shows the spectral mask requirements in different working modes.

72 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 5.13. Spectral mask requirements in different working modes

5.2.6 Strapping Pins

ESP32-C3 has three strapping pins: GPIO2, GPIO8, and GPIO9. During the chip’s system
reset, the strapping pins sample their voltage levels and store them into the latch until the
chip is powered down or shut down. Depending on the stored voltage levels, the chip will
enter different boot modes after system reset. The correspondence between the voltage
levels and the boot modes is shown in Table 5.5. After reset, the strapping pins function as
normal pins.

Table 5.5. Voltage level of strapping pins and corresponding boot mode

Strapping Pins Default SPI Boot Download Boot

GPIO2 N/A 1 1

GPIO8 N/A Irrelevant 1

GPIO9 Weak internal pull-up 1 0

5.2.7 GPIO and PWM Controller

ESP32-C3 has 22 GPIO pins which can be assigned various functions by configuring corre-
sponding registers. All GPIOs can be configured with internal pull-up, pull-down, or set to
high impedance. GPIO MUX and GPIO Matrix are used to collectively control the GPIO pin
signals of the chip. By utilising GPIO MUX and GPIO Matrix (as shown in Figure 5.14), it
is possible to configure the peripheral input signals from any GPIO pin, and the peripheral

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 73

output signals can also be connected to any GPIO pin.

Figure 5.14. IO MUX and GPIO matrix

The PWM controller can generate independent PWM signals on six channels, which can be
configured to any GPIO pins through the GPIO Matrix.

5.3 Practice: Building a Smart Light System with ESP32-C3
Section 5.2 introduced how to design the minimum hardware system (core circuit) and com-
munication system for smart light products based on ESP32-C3. This minimum hardware
system includes the main peripheral components and the antenna part which needs to be
matched with the network analyser and RF tester according to the selected antenna type
and the design of RF circuit. Antenna matching may be difficult for users who are new
to RF. So, is there a ready-made minimum hardware system which has been tuned for RF
performance, for users to get started quickly to develop a smart light product?

Yes, there ARE hardware modules based on the ESP32-C3 chip ready for operation. Apart
from the chip, these modules also integrate a crystal oscillator, flash, antenna, RF circuit and
main peripheral components. In addition, the modules have passed certification of SRRC,
CE, FCC, and KCC, and can be directly applied to smart light products. In the following
sections, we will choose one of the ESP32-C3 modules for smart light products design.

5.3.1 Selecting Modules

As shown in Table 5.6, in terms of the type of antenna, ESP32-C3 modules can be divided
into PCB antenna modules and IPEX external antenna modules; in terms of size and pins,
they can be divided into WROOM series and MINI series. Each module has two temper-
ature range versions: –40 ⇠ 85 °C version and –40 ⇠ 105 °C version, suitable for smart
lights of different temperature requirements. For lighting products such as LED bulbs which
characterise high internal temperature, it is recommended to use the –40 ⇠ 105 °C module.
For other lighting products which do not have high internal temperature, the –40 ⇠ 85 °C
module is suitable.

74 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Table 5.6. ESP32-C3 modules

Module Antenna Temp (°C) Size (mm)

ESP32-C3-WROOM-02

PCB antenna
–40 ⇠ 85 °C/
–40 ⇠ 105 °C

18×20×3.2

ESP32-C3-WROOM-02U

IPEX external antenna
–40 ⇠ 85 °C/
–40 ⇠ 105 °C

18×14.3×3.2

ESP32-C3-MINI-1

PCB antenna
–40 ⇠ 85 °C/
–40 ⇠ 105 °C

13.2×16.6×2.4

ESP32-C3-MINI-1U

IPEX external antenna
–40 ⇠ 85 °C/
–40 ⇠ 105 °C

13.2×12.5×2.4

NOTE

You can also select one module from ESP8685-WROOM-01 to ESP8685-WROOM-07 series
for a smaller package. For more information, please visit products.espressif.com.

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 75

https://products.espressif.com/#/

5.3.2 Configuring GPIOs of PWM Signals

The PWM controller of ESP32-C3 can generate independent PWM signals on six channels,
which can be assigned to any GPIOs through the GPIO matrix. In our design, five channels
of PWM signals are used to control R (red), G (green), B (blue), CW (cool white), and WW
(warm white) signals. In real application, we can use one channel to control the duty cycles
of WW and CW LEDs to adjust the colour temperature, and another channel to control the
total current to adjust the brightness of WW and CW LEDs. The GPIO configuration of each
PWM signal is shown in Table 5.7.

Table 5.7. GPIO configuration for PWM signals

Function GPIO Configuration

R (Red) GPIO3

G (Green) GPIO4

B (Blue) GPIO5

CW (Cool white) GPIO7

WW (Warm white) GPIO10

When selecting GPIOs, make sure that they are not at high level after chip start-up, otherwise
the LED bulb may flicker when powered on. If no suitable GPIO is available, add a 10 k⌦
pull-down resistor to the GPIO to prevent flickering. Any GPIOs on ESP32-C3 can be used
for PWM function, as long as they are configured during initialisation after chip power-up.

Figure 5.15 shows the minimum control system based on the ESP32-C3-WROOM-02 mod-
ule, which is connected to five LEDs of red, green, blue, cool white, and warm white.

5.3.3 Downloading Firmware and Debugging Interface

1. Connect ESP32-C3 to a PC.

The ESP32-C3 chip integrates a USB Serial/JTAG controller which makes external USB-to-
UART bridge or JTAG adapter unnecessary. The USB on ESP32-C3 uses GPIO19 as D+ and
GPIO18 as D–, and can be directly connected to the USB interface on the PC, so as to realise
firmware download, log printing, and JTAG debugging. Figure 5.16 shows that an ESP32-C3
board is connected to a PC through the built-in USB Serial/JTAG controller. You may visit
https://bookc3.espressif.com/usb for more applications of the USB Serial/JTAG controller.

For some ESP32-C3 development boards, a USB-to-UART bridge has been connected to the
UART0 interface of the chip. Developers only need to connect the USB interface of the PC to

76 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://bookc3.espressif.com/usb

Figure 5.15. Minimum control system based on ESP32-C3-WROOM-02

Figure 5.16. ESP32-C3 and PC connected through USB Serial/JTAG controller

the development board through the bridge, to realise firmware download and log printing,
as shown in Figure 5.17.

Figure 5.17. USB-to-UART bridge connecting ESP32-C3 development board and PC

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 77

As for a finished board, to save its space and cost, we often use a programmer with USB-
to-UART bridge to connect to the UART0 interface on the ESP32-C3 chip, to implement
firmware download and log printing. Figure 5.18 shows that a programmer with USB-to-
UART bridge is used to connect the development board and the PC.

Figure 5.18. Programmer with USB-to-UART bridge connecting ESP32-C3 and PC

2. Download firmware.

The firmware and system parameters of ESP32-C3 are stored in the SPI flash. To flash
firmware into the chip, first put the chip in download boot mode. According to Table 5.5,
GPIO2 and GPIO8 should be at high level, and GPIO9 should be at low level. Reset the chip
to enter download boot mode. Connect ESP32-C3 to the PC using any of the three methods
above to start firmware download.

3. Debug interface.

There are two ways to debug interface: log printing over serial port and JTAG debugging.

Log printing over serial port
ESP32-C3 ROM code and IDF SDK output log messages through UART0 by default. Con-
nect ESP32-C3 and the PC with any of the three methods above to enable logging in the
PC’s terminal.

JTAG debugging
You can directly use the USB JTAG controller integrated in ESP32-C3 for debugging. To
do this, you need to connect the JTAG pins – MTMS/GPIO4, MTDI/GPIO5, MTCK/GPIO6,
and MTDO/GPIO7 – to an external JTAG adapter to implement debugging.

5.3.4 Guidelines for RF Design

When designing a smart light product using a module with PCB onboard antenna, pay atten-
tion to its placement on the base board to minimize the impact of the board on its antenna
performance. The module should be placed as close to the edge of the base board as possi-
ble. It’s best to place the PCB antenna area outside the base board and keep its feed point
closest to the board.

78 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

The antenna feed point of ESP32-C3-WROOM-02 is on the right, while that of ESP32-C3-
MINI-1 is on the left. The placement of these two modules is shown in Figure 5.19 and
5.20.

Figure 5.19. ESP32-C3 module on base board - antenna feed point on the right

Figure 5.20. ESP32-C3 module on base board - antenna feed point on the left

NOTE

For feed points on the right (as in Figure 5.19), position 3 and 4 are preferred. For feed
points on the left (as in Figure 5.20), position 1 and 5 are preferred.

If the positions recommended are unavailable, please make sure that the module is not
covered by any metal shell. The PCB antenna area and the area extended by 15 mm should
be kept clear, namely no copper traces, wiring, or component placement. The clearance
area should be as large as possible, as shown in Figure 5.21. In addition, if there is base

Chapter 5. Hardware Design of Smart Light Products based on ESP32-C3 79

board under the antenna area, it is recommended to cut it off to minimize its impact. When
designing an end product, pay attention to the impact of enclosure on the antenna.

Figure 5.21. Clearance area on the base board

5.3.5 Guidelines for Power Supply Design

When powering up the ESP32-C3 module through a single pin, the power supply should be
of 3.3 V with 500 mA or larger current output. Power ripples can significantly affect the RF
TX performance. Generally, the peak value of the ripple should be less than 80 mV when
transmitting IEEE 802.11n MCS7 packets, and less than 120 mV when transmitting at 11
Mbit/s.

5.4 Summary
After reading this chapter, you should have acquired knowledge of the following subjects
and be able to build your own hardware system for a smart light product:

• Components of a smart light system, implementation of smart light functions, and
functional modules of smart LED lights.

• Principles and methods of LED dimming and color changing.
• Implementing PWM control and wireless communication based on ESP32-C3.
• Selecting antenna for wireless communication, and the main parameters and testing

methods of Wi-Fi RF performance.
• Features of ESP32-C3 and its core circuit design.
• Selecting ESP32-C3 module to simplify application design for smart light products.
• Guidelines for designing smart light products based on ESP32-C3.

80 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Chapter
6

Driver Development

In the last chapter, we introduced the functions and hardware components of an IoT product
(the Smart Light). In this chapter, we will move on to its driver development. Among the
four layers of the IoT architecture, the perception & control layer is intended to control
objects, for example to switch on/off lights, or to open/close a curtain. To control different
objects, corresponding hardware drivers are required, such as LED drivers and motor control
drivers. The perception & control layer can be combined with cloud computing, data mining,
fuzzy recognition, and other AI technologies on the upper layer, to analyse and process
massive data and information, smartly control objects, and realise real-time control, precise
management, and scientific decision-making.

6.1 Driver Development Process
To develop a sensor driver, it generally takes three steps: know about the sensor, develop a
sensor driver, and test the driver.

1. Know about the sensor.
By reading the sensor’s datasheet or other means, learn about the characteristics of the
sensor including its type, communication interface (e.g., I2C, SPI), measurement cycle,
working mode, power mode, etc.

2. Develop a sensor driver.
The main purpose of developing a sensor driver is to control the behaviors of the sensor
through the SoC’s peripheral interfaces.

3. Test the driver.
Once the development is done, write test cases to examine whether the driver can read
data and control the peripheral interface successfully.

It takes similar steps to develop a controller driver: know about the controller, develop a
driver, and test the driver.

1. Know about the controller.
By reading the controller’s datasheet, learn about the controller’s working principles, so
as to select a suitable peripheral interface.

81

2. Develop a driver.
Based on the peripheral interface selected before, develop corresponding driver APIs for
other embedded software modules.

3. Test the driver.
Write test cases to examine whether each driver API can be called and operate as expected.

6.2 ESP32-C3 Peripheral Applications
The ESP32-C3 chip has rich peripheral interfaces, as shown in Figure 6.1. In this section, we
will introduce the application scenarios of ESP32-C3 peripheral interfaces in terms of the
perception & control layer.

Figure 6.1. Peripheral applications of ESP32-C3

Human Machine Interface (HMI)
HMI products are digital devices composed of an input unit (e.g., touch screen and but-
tons) to receive commands and a display to show information, thus realising human ma-
chine interaction. According to their application scenarios, LCD displays, monochrome
displays, and OLED displays can be connected through the SPI and I2C interfaces on
ESP32-C3. GPIOs and ADC are used to read physical button inputs from users. Further-
more, capacitive touch pins of ESP32, ESP32-S2, and ESP32-S3 can be used for touch
buttons, matrix buttons, linear sliders, 2D touch panels, and proximity sensing. These
button and display related functions apply to smart door locks and other devices with
screens. The I2S interface can be used to connect external audio codecs for devices with
voice interaction features. The I2C interface can be used to drive digital tube displays or
LED dot matrix displays, which are common for embedded applications. Compared with

82 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

LCD displays, these displays use fewer GPIOs and less internal memory, and are easier to
be implemented. They are more suitable for scenarios with simpler requirements such as
timing, counting, and status display.

Sensors
Simply speaking, sensors refer to devices and components that can convert various phys-
ical, chemical, and biological quantities in nature into measurable electrical signals. In
this case, different types of sensors are needed. Sensors are the nerve endings of IoT
and the core components for human beings to fully perceive nature. It is indispensable
to deploy various sensors at a large scale for IoT development. We may use temperature
and humidity sensors, inertial sensors, light sensors, air pressure sensors, gesture sensors,
etc., depending on application scenarios. They need to be connected through different
peripheral interfaces to function and collect data. As for ESP32-C3, I2C, SPI, and ADC are
the common peripheral interfaces to drive sensors.

For your reference, drivers compatible with different types of sensors are provided in the
espressif/esp-iot-solution repository on our GitHub.

Controllers
Controlling objects is an important function of the perception & control layer. Control
systems can be divided into two categories: the open-loop system and the closed-loop
system. An open-loop control system, with no feedback mechanism, uses actuators to
directly control objects. Its output signals have no influence or effect on other control
actions within the system. But in closed-loop control systems, output is usually measured
by sensors and fed back for comparison with the set point. The deviation between the
actual output and the expected point is then used to automatically generate the next com-
mand. In smart home applications, common controlled objects include lighting, motors,
and switches, which are mostly controlled by SoCs’ digital and analog signals. The LED
PWM, GPIO, and ADC peripheral interfaces of ESP32-C3 can be used to tranmit the above
signals.

6.3 LED Driver Basics
This section will introduce the basic knowledge of LED drivers, including color spaces in
lighting, LED driver types, LED dimming methods, and PWM.

6.3.1 Color Spaces

Cyan, magenta, and yellow (CMY) are the three primary colors for painting. They mix with
each other and generate a set of colors which constitue the CMY color space. We define the
amount of magenta as the x axis, yellow as the y axis, and cyan as the z axis, thus creating
a 3D space where each color has a unique position.

Chapter 6. Driver Development 83

https://github.com/espressif/esp-iot-solution

CMY is not the only color space. Computer monitors generally use the RGB (red, green,
blue) color space, in which the amount of red, green, and blue are assigend as x, y, and z

axis. Another color space is HSV, which describes colors in terms of hue (x axis), saturation
(or chroma, y axis) and value (or brightness, z axis). The lighting industry commonly uses
the HSL color space, which generates colors by changing hue, saturation, and lightness.

1. RGB color space

The RGB color space is the one we are most familiar with. As shown in Figure 6.2, this
color space is represented by mixing the three primary colors to reproduce almost any color.
It is the basic, hardware-oriented color space commonly used in image processing, and
is relatively easy to understand. It uses a linear combination of three primary colors to
represent a secondary color. The three primary components are highly correlated, so it is
not visually intuitive when transitioning colors continuously. To adjust the color of an LED,
you need to change the amount of all three primary colors.

Figure 6.2. RGB color space

Images acquired in natural environments are easily affected by natural light, occlusion, and
shadows. That is, they are sensitive to brightness. The amount of three primary colors in
the RGB color space are closely related to brightness. So long as the brightness changes, the
amount of all three colors will change accordingly. There is, however, no intuitive way to re-
flect this change. The human eye is not equally sensitive to the three colors. In monochrome
vision, the human eye is least sensitive to red and most sensitive to blue. Due to this varia-
tion in sensitivity, the RGB color space is considered to have poor uniformity. The way the
human eye perceives color similarities deviates greatly from the Euclidean distance in the
RGB color space. Therefore, it is difficult for human beings to represent a color accurately
by the amount of three primary colors.

84 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

2. HSV color space

The HSV color space is widely used in computers, as shown in Figure 6.3. Compared with
the RGB color space, HSV is closer to the human perception of colors. It can intuitively
represent the hue, saturation, and brightness value of colors for comparison.

Figure 6.3. HSV color space

It is easier to track an object of a particular color in the HSV space than in the RGB space,
and thus the HSV color space is often used to segment objects of a specified color. HSV space
defines colors in terms of hue, saturation, and value (brightness).

Usually, the HSV color space is mapped to a cylinder. The cross section of the cylinder can
be regarded as a polar coordinate system, in which the polar angle is interpreted as hue, the
polar axis length interpreted as saturation, and the height of the cylinder axis as value. Hue
is measured in angle and ranges from 0 to 360°, indicating the position of the spectral color.
Figure 6.4 illustrates hue in the HSV color space.

Figure 6.4. HSV color space – hue

In Figure 6.4, all the colors on the wheel are spectrum colors. Calculated counterclockwise
from red, 0 represents red, 120° represents green, and 240° represents blue.

In the RGB color space, one color is determined by three values. For example, yellow is
represented by (255,255,0). In the HSV color space, yellow is represented by only one
value, i.e., Hue=60.

Chapter 6. Driver Development 85

Figure 6.5 is the semi horizontal cross-section of the cylinder (Hue=60) and illustrates
saturation and value in the HSV color space.

Figure 6.5. HSV color space – saturation and value

In Figure 6.5, the horizontal axis represents saturation, which indicates the deviation from
the spectrum colors. It ranges from 0% to 100%, where 0 represents pure white. The higher
the saturation, the darker the color, the closer to the spectrum color, and vice versa.

The vertical axis represents value, which indicates the brightness of the color in the HSV
color space. Value ranges from 0% to 100%, where 0 represents plain black. The higher the
value, the brighter the color.

3. HSL color space

The HSL color space is similar to the HSV color space. It also has three components: hue,
saturation, and lightness. The difference lies in the last component. Lightness in HSL rep-
resents luminance. A lightness of 100 means white, whereas a lightness of 0 means black.
Value in HSV represents brightness. A value of 100 equals spectrum color, whereas a value
of 0 equals black. Figure 6.6 shows the HSL color space.

Figure 6.6. HSL color space

Figure 6.7 shows hue in the HSL color space, which represents the range of colors the human
eye can perceive. They are distributed on a flat color wheel; each represented by a hue of 0

86 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

to 360°. The significance of hue is that we can change the color by rotating the color wheel
without changing saturation or lightness.

Figure 6.7. HSL color space – hue

Figure 6.8 shows saturation in the HSL color space, ranging from 0% to 100%. It describes
the changes of color purity under the same hue and lightness. The larger the saturation, the
brighter and less gray of the color.

Figure 6.8. HSL color space – saturation

Figure 6.9 shows lightness in the HSL color space, which represents the luminance of a color.
It ranges from 0% to 100%. The smaller the value, the darker the color, and the closer to
black, and vice versa.

Figure 6.9. HSL color space – lightness

The three color spaces introduced above merely describe colors from different dimensions,
and thus can be mutually converted. In practice, the LED lights uses RGB color space as the
brightness of red, green, and blue beads are adjusted to generate various colors. However,
the user interface and control commands usually use the HSV or HSL color space. There-
fore, the LED driver needs to convert values from the HSV or HSL dimension to the RGB
dimension, so as to get the expected LED color.

Chapter 6. Driver Development 87

6.3.2 LED Driver

Compared with traditional light sources, LED is more energy-efficient and eco-friendly with
longer lifespan. It is a low-voltage, high-current semiconductor component. Its luminous
intensity is positively associated with the forward current. When selecting an LED driver,
we need to consider the working environment. If the driver is sensitive to the ambient tem-
perature, we should use components that generate less heat, or dissipate heat. LED driver
is a core component of smart lights and will directly affect the lifespan and use experience
of smart lights. At present, there are mainly two types of LED drivers.

Constant-voltage drivers
Constant-voltage drivers provide stable terminal voltage for the LED, and the current
changes with the load. When driven by a constant-voltage driver, each LED bead needs a
suitable resistor to emit light of the same brightness.

Constant-current drivers
Constant-current drivers stablize the current flowing through the LED, and the voltage
across the LED changes with the load. When driven by a constant-current driver, the LED
can be dimmed by controlling the current flowing through it.

6.3.3 LED Dimming

Dimming is a basic feature of smart LED lights including changing the color, brightness, and
on/off status. Users can adjust LED lights through a smartphone app, a remote controller,
etc. There are three LED dimming methods.

TRIAC dimming
When using TRIAC dimming, the waveform of the input voltage changes with the con-
duction angle of the TRIAC, thereby changing the effective value of the input voltage and
eventually dimming the LED light. TRIAC dimming is suitable for traditional lamps such
as incandescent lamps and fluorescent lamps.

PWM dimming
Basically, PWM switches on/off LED lights and dims lights by sending PWM signals and
changing their frequency and duty cycle.

I2C dimming
The constant-current LED linear controller ICs with I2C interfaces are suitable for driving
low-power LED lights. Such ICs receive control signals through I2C input interfaces and
adjust the current of multiple independent output interfaces to dim the LED.

Among the three LED dimming methods above, PWM dimming performs the best. It guar-
antees no color shifts and stability at low brightness and is therefore widely used.

Figure 6.10 is the block diagram of PWM dimming, which mainly includes on/off signal

88 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

sampling circuit, the main control circuit and the PWM controller. The on/off signal sam-
pling circuit generates a clock signal after detecting the on/off signal in the circuit. The
main control circuit receives the clock signal and generates three pulse signals, which are
respectively output to three PWM controllers. The PWM controllers output different current
signals based on the pulse signals to adjust the brightness of corresponding LED bead. The
main control circuit usually includes a microcontroller unit, whose input is connected to the
on/off signal sampling circuit, and three outputs are respectively connected to three PWM
controllers. The outputs of PWM controllers are connected to the red, green, and blue LED
beads respectively, thereby controlling their brightness to get the expected color. All LED
beads are packaged in one lampshade.

Figure 6.10. Block diagram of PWM dimming

6.3.4 Introduction to PWM

Pulse width modulation (PWM) is a technique that converts analogue signals into pulse
signals (a means of controlling analogue output with digital signals). It can be used to
control the brightness of LEDs, the speed of DC motors, etc.

It has three main parameters: frequency, period, and duty cycle. PWM frequency is the
number of times the PWM signal goes from high level to low level and back to high level
within one second. It is measured in Hz. PWM period is the reciprocal of PWM frequency.
PWM duty cycle refers to the ratio of the high-level time to one PWM period, ranging from
0% to 100%. Figure 6.11 shows the PWM duty cycle.

For example, if the PWM period is 10 ms and the pulse width time is 8 ms, then the PWM
duty cycle is 8/10=80%.

Chapter 6. Driver Development 89

Figure 6.11. PWM duty cycle

When using PWM to control an LED, if the light is turned on for 1 second and then off for
1 second repeatedly (i.e., period = 2s, duty cycle = 50%), the LED will appear to blink. If
this cycle is shortened to 200 ms, with the LED being on for 100 ms and then off for 100
ms, the LED will appear to blink at a higher frequency. Due to the persistence of vision,
as the cycle continues decreasing, there will be a critical threshold where the human eye
cannot perceive the blinking of the LED. At this point, the persistence of vision blends the on
and off images, resulting in a stable average brightness. This average brightness is directly
related to the PWM duty cycle, as shown in Figure 6.12. Therefore, we can dim LED lights
by adjusting the PWM duty cycle.

Figure 6.12. Relationship between PWM duty cycle and average brightness

6.4 LED Dimming Driver Development
After understanding the basics of LED drivers, we can start developing a dimming driver
based on the ESP32-C3 chip. This mainly includes the development of functional APIs for
controlling the switch, brightness, color, and color temperature. In daily life, it is usually
expected to maintain the color, brightness, and color temperature of a light consistent with
its previous status when turning it on. This requires preserving the light’s status when it is
turned off. To achieve this, we can use the non-volatile storage (NVS) feature provided by
ESP-IDF.

So before writing the driver code, it is also necessary to learn about the LED PWM controller
of ESP32-C3, its programming procedures, and non-volatile storage.

90 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

6.4.1 Non-Volatile Storage (NVS)

The non-volatile storage in ESP-IDF uses a portion of the main flash memory through esp_

partition.h APIs to store key-value pairs. Since NVS is permanent, even if the device is
restarted or powered off, the stored data will not be lost. NVS has been specially designed to
prevent data corruption caused by power failure, and to distribute the written data through-
out NVS in case of flash wear and tear. The dedicated partition in flash used by NVS stores
data of various types, such as integers, NULL-terminated strings, and binary data.

NVS is suitable for storing small data, rather than large data such as strings or binary large
objects (BLOBs) which should be handled by the FAT file system based on wear leveling. In
IoT projects, NVS can store not only the unique mass production data for products, but also
any user data related to the application.

Following are several key concepts of NVS: key-value pairs, namespaces, security, tamper
resistance, and robustness.

Key-value pairs
NVS operates on key-value pairs, as in “key:value”. Keys are ASCII strings of up to 15
characters, while values can be any of the following types:

• Integers: uint8_t, int8_t, uint16_t, int16_t, uint32_t, int32_t,
uint64_t, and int64_t.

• Strings ending with “0”.
• Variable-length binary data.

Namespaces
To mitigate potential conflicts in key names between different components, NVS assigns
a namespace to each key-value pair, which follows the same naming rule as keys, i.e.,
the maximum length is 15 characters. These names are specified in the nvs_open()

or nvs_open_from_part() call. This call returns an opaque handle, which is used in
subsequent calls to nvs_get_*(), nvs_set_*(), and nvs_commit() functions. In
this way, a handle is associated with each namespace, and key names will not collide with
the same names in other namespaces. Please note that the namespaces with the same
name in different NVS partitions are considered as separate namespaces.

Security, tamper resistance, and robustness
After NVS encryption, data will be stored in encrypted form. If NVS encryption is not
enabled, any user with physical access to the flash can modify, erase, or add key-value
pairs. If NVS encryption is enabled, key-value pairs cannot be modified or added without
knowing the corresponding NVS encryption key. However, there is no tamper-resistance
against the erase operation.

When the flash runs into an inconsistent state, NVS will try recovering. Powering off a

Chapter 6. Driver Development 91

device at any time and then powering it back on will not cause data loss. However, if the
device is powered off while writing a new key-value pair, that specific pair may be lost.

6.4.2 LED PWM Controller (LEDC)

The LED PWM controller of ESP32-C3 can generate six independent digital waveforms, with
the following features:

• Six independent PWM generators (i.e., six channels)
• Four independent timers that support division by fractions
• Automatic duty cycle fading (i.e., gradual increase/decrease of a PWM’s duty cycle

without interference from ESP32-C3) with interrupt generation on fade completion
• Adjustable phase of PWM signal output
• PWM signal in Light-sleep mode (see details of low-power modes in Chapter 12)
• Maximum PWM resolution: 14 bits

The four timers are identical regarding their features and operation. The following sections
refer to the timers collectively as Timerx (where x ranges from 0 to 3). Likewise, the six PWM
generators are also identical in features and operation, and thus are collectively referred to
as PWMn (where n ranges from 0 to 5). Figure 6.13 shows the LED PWM timer.

Figure 6.13. LED PWM timer

The four timers can be independently configured (i.e., configurable clock divider, and counter
overflow value) and each internally maintains a timebase counter (i.e., a counter that counts
on cycles of a reference clock). Each PWM generator selects one of the four timers, uses the
timer’s counter value as a reference to generate PWM signals, and outputs the signals to the
timer.

Figure 6.14 shows the main functional blocks of the timer and the PWM generator.

92 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 6.14. Functional blocks of LED PWM timer and generator

To generate PWM signals, a PWM generator (PWMn) needs to select one of the four timers
(Timerx) and use its counter value as a reference to generate signals. Each PWM gener-
ator has a comparator and two multiplexers. It compares the timer’s 14-bit counter value
(timerx cnt) to two trigger values of the comparator hpointn and lpointn. When timerx cnt
equals hpointn or lpointn, high- or low-level PWM signal will be generated respectively.

Figure 6.15 shows how hpointn and lpointn are used to generate PWM signals with a fixed
duty cycle.

Figure 6.15. Generating PWM signals with a fixed duty cycle using hpointn and lpointn

PWM generators can fade the duty cycle of a PWM output signal. When duty cycle fading
is enabled, the value of lpointn will be incremented/decremented every time the counter
overflows a certain number of times. Figure 6.16 demonstrates the process of duty cycle
fading.

Chapter 6. Driver Development 93

Figure 6.16. Duty cycle fading

6.4.3 LED PWM Programming

Having learned about the LEDC of ESP32-C3, now we need to configure the controller using
LED PWM APIs provided by ESP-IDF. The configuration includes three steps, as shown in
Figure 6.17.

1. Configure the timer, specifying the frequency and duty resolution of PWM signals.
2. Configure the channel, mapping the timer to the GPIOs that output PWM signals.
3. Output PWM signals to drive the LED. The brightness of the LED can be changed

through software control or the hardware’s duty cycle fading function.

Figure 6.17. Steps of configuring PWM controller

1. Configuring the timer

Timers can be configured by calling ledc_timer_config(), when an ledc_timer_

config_t structure with the following parameters needs to be passed to the function:

• Speed mode (the value of this parameter must be LEDC_LOW_SPEED_MODE);
• Timer index timer_num;
• PWM frequency;
• PWM duty resolution.

94 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

PWM frequency is inversely proportional to duty resolution, as higher frequency results in
fewer available duty cycles for a given period and vice versa. This interrelationship may be
more important if the API is used for purposes other than changing the brightness of LEDs.

2. Configuring the channel

After configuring the timer, you also need to configure the required channel (one of ledc_
channel_t) by calling ledc_channel_config(). An ledc_channel_config_t struc-
ture with channel configuration parameters needs to be passed to the function.

Then the channel will start operating according to the ledc_channel_config_t struc-
ture and generate PWM signals on the selected GPIOs with the frequency specified in step 1
and the duty cycle specified in step 2. This process can be suspended at any time by calling
the ledc_stop() function.

3. Changing PWM signals

Once the channel starts operating and generating the PWM signal with a constant duty
cycle and frequency, there are a couple of ways to change this signal. For LED dimming, we
primarily change the duty cycle to vary the light color and brightness.

Changing PWM duty cycle using software
To set the duty cycle, use the dedicated function ledc_set_duty(). After that, call
ledc_update_duty() to activate the changes. To check the currently set value, use the
function ledc_get_duty().

Another way to set the duty cycle, as well as some other channel parameters, is by calling
ledc_channel_config().

The PWM duty cycle passed to the function depends on duty_resolution, and the
value ranges from 0 to 2duty_resolution–1. For example, if duty_resolution is
10, then the duty cycle values can range from 0 to 1023.

Changing PWM duty cycle using hardware
LEDCs provide the means to gradually change (fade) the duty cycle. To use this function-
ality, enable fading with ledc_fade_func_install() and then configure it by calling
one of the following functions.
1. esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode,

2. ledc_channel_t channel,

3. uint32_t target_duty,

4. int max_fade_time_ms);

5.

6. esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode,

7. ledc_channel_t channel,

Chapter 6. Driver Development 95

8. uint32_t target_duty,

9. uint32_t scale,

10. uint32_t cycle_num);

11.

12. esp_err_t ledc_set_fade(ledc_mode_t speed_mode,

13. ledc_channel_t channel,

14. uint32_t duty,

15. ledc_duty_direction_t fade_direction,

16. uint32_t step_num,

17. uint32_t duty_cycle_num,

18. uint32_t duty_scale);

Finally, call ledc_fade_start() to initiate fading. If not required anymore, the fading
can be disabled with ledc_fade_func_uninstall().

4. Range of PWM frequency and duty resolution

The LED PWM controller is mainly used for driving LED dimming. It provides a large flex-
ibility of PWM duty cycle settings. For instance, the PWM frequency of 5 kHz can have
the maximum duty resolution of 13 bits. This means that the duty can be set anywhere
from 0% to 100% with a resolution of ⇠0.012% (213 = 8192 discrete levels of LED bright-
ness). Please note that these parameters depend on the clock signal clocking the LED PWM
controller timer which in turn clocks the channel.

The LEDC can be used for generating signals with higher frequencies that are sufficient to
clock other devices such as digital camera modules. In this case, the maximum frequency
can be 40 MHz with duty resolution of 1 bit. This means that the duty cycle is fixed at 50%
and cannot be adjusted.

The LEDC API will report an error when the configured frequency and duty resolution exceed
the range of LEDC’s hardware. For example, an attempt to set the frequency to 20 MHz and
the duty resolution to 3 bits will result in the following error reported on a serial monitor:

[E (196) ledc: requested frequency and duty resolution cannot be achieved, try

reducing freq_hz or duty_resolution. div_param=128]

In such a situation, either the duty resolution or the frequency must be reduced. For exam-
ple, setting the duty resolution to 2 bits can solve this problem and will make it possible to
set the duty cycle at 25% steps, i.e., at 25%, 50%, or 75%.

The LEDC driver will also capture and report attempts to configure frequency / duty resolu-
tion combinations that are below the supported minimum, e.g.:

[[E (196) ledc: requested frequency and duty resolution cannot be achieved, try

increasing freq_hz or duty_resolution. div_param=128000000]]

The duty resolution is normally set by ledc_timer_bit_t, with a range of 10 to 15 bits.
For smaller duty resolutions (from 10 down to 1), just enter the equivalent numeric directly.

96 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

6.5 Practice: Adding Drivers to Smart Light Project
There are two drivers to be developed in a smart light project – the button driver and the
LED dimming driver. With these two drivers, we can use a button to control LEDs.

6.5.1 Button Driver

When using ESP32-C3-DevKitM-1 to simulate smart light for development, we can find two
buttons on the board, namely the Boot button and the RST button. The RST button is used
for resetting and restarting ESP32-C3, while the Boot button functions as a regular button
once the firmware starts operating. In other words, the Boot button can be used to simulate
a light switch.

For this purpose, we introduce the button component as the button driver. You may read
the source code to learn about its development, as we will not expound on it in this book.
To add the driver to the smart light project, please follow the steps below.

1. Adding driver-related source files

Create a folder named components under the directory of the smart light project and put
the components used by the project into the folder.

Create a subfolder named button under components.

Then, create the source files and header files for the button driver in button, and edit the
code accordingly.

Specific code can be found from book-esp32c3-iot-projects/device firmware/

components/button.

In the main folder of the project, create a source file named app_driver.c to process all
the drivers. Meanwhile, create header files in the include folder under main. Add driver
operations and function declarations to corresponding files, such as driver initialization and
button event processing. The key code is as follows.
1. //Callback function for pressing the button

2. static void push_btn_cb(void *arg)

3. {

4. //Code Omitted

5. }

6. void app_driver_init()

7. {

8. //Initializing button driver

9. button_config_t btn_cfg = {

10. .type = BUTTON_TYPE_GPIO,

11. .gpio_button_config = {

12. .gpio_num = LIGHT_BUTTON_GPIO,

Chapter 6. Driver Development 97

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/components/button
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/components/button

13. .active_level = LIGHT_BUTTON_ACTIVE_LEVEL,

14. },

15. };

16. button_handle_t btn_handle = iot_button_create(&btn_cfg);

17. if (btn_handle) {

18. iot_button_register_cb(btn_handle, BUTTON_PRESS_UP, push_btn_cb);

19. }

20. //Code Omitted

21. }

2. Adding source files to the compiling system

First, edit the CMakeLists.txt file under the project directory. Append the path of the
components in components to the search path with the following code:
1. //Code Omitted

2. set(EXTRA_COMPONENT_DIRS ${CMAKE_CURRENT_LIST_DIR}/../components)

3. //Code Omitted

Then, edit the CMakeLists.txt file in the main folder. Add the source file app_driver.c
to the compiling system with the following code:
1. set(srcs "app_main.c"

2. "app_driver.c")

3. set(include_dirs "include")

4. idf_component_register(SRCS "${srcs}"

5. INCLUDE_DIRS "${include_dirs}")

Besides, the button component also has a CMakeLists.txt file, which is used to add the
button driver source code to the compiling system. You may refer to book-esp32c3-iot
-projects/device firmware/components/button/CMakeLists.txt for details.
Other components to be added have similar structures and will not be explained again in
subsequent chapters.

6.5.2 LED Dimming Driver

The LED lights used in our project have five color options: red, green, blue, warm (WW),
and cold (CW), so we need five PWM channels to control them. The target functions in-
clude turning on/off LED lights, and controlling their color, color temperature, brightness,
breathing, and fading. However, since we are using the ESP32-C3-DevKitM-1 in practice,
which only has R, G, and B channels, we can only change LEDs’ colors but not their color
temperature during development.

According to the requirements of the smart light project, the LED dimming driver is encap-
sulated and provided in the form of a light_driver component, which can be found at
book-esp32c3-iot-projects/device firmware/components/light driver.

Besides, to save the status of LED lights, the project also introduces an app_storage com-

98 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/device_firmware/components/button/CMakeLists.txt
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/device_firmware/components/button/CMakeLists.txt
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/components/light_driver

ponent. Its underlayer adopts NVS, which stores key-value pairs in the main flash partition
by calling APIs in esp_partition.h. The component can be found at book-esp32c3-
iot-projects/device firmware/components/app storage.

1. light driver component

According to the requirements of this project, the light_driver component implements
functions such as initializing/deinitializing the LED dimming driver, turning on/off lights,
controlling their color, brightness, color temperature, etc. Table 6.1 lists the APIs provided
for the main application by the LED dimming driver in the light_driver component.

Table 6.1. APIs provided by the LED dimming driver in light driver

API Function

light_driver_init() Initialize light_driver

light_driver_deinit() Deinitialize light_driver

light_driver_config() Configure fade time and blink cycle of light_driver

light_driver_set_switch() Turn on/off LED lights

light_driver_get_switch() Get the on/off status of LED lights

light_driver_set_hue() Set the Hue

light_driver_get_hue() Get the Hue

light_driver_set_saturation() Set the Saturation

light_driver_get_saturation() Get the Saturation

light_driver_set_value() Set the Value (as in HSV)

light_driver_get_value() Get the Value (as in HSV)

light_driver_set_hsv() Set the three HSV components in one call

light_driver_get_hsv() Get the three HSV components in one call

light_driver_set_lightness() Set the Lightness (as in HSL)

light_driver_get_lightness() Get the Lightness (as in HSL)

light_driver_set_hsl() Set the three HSL components in one call

light_driver_get_hsl() Get the three HSL components in one call

light_driver_set_color_temperature() Set the color temperature

light_driver_get_color_temperature() Get the color temperature

light_driver_set_brightness() Set the brightness

Chapter 6. Driver Development 99

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/components/app_storage
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/components/app_storage

Continuation of Table 6.1

API Function

light_driver_get_brightness() Get the brightness

light_driver_set_ctb() Set color temperature and brightness in one call

light_driver_get_ctb() Get color temperature and brightness in one call

light_driver_set_rgb() Set the three RGB components in one call

light_driver_breath_start() Set the color of LED breathing and start breathing

light_driver_breath_stop() Stop breathing

light_driver_blink_start() Set the colour of LED blinking and start blinking

light_driver_blink_stop() Stop blinking

2. app storage component

The app_storage component uses non-volatile storage (NVS) at its underlying layer. Table
6.2 shows the APIs provided for the main application by the app_storage component.

Table 6.2. APIs provided by the app storage component

API Function

app_storage_init() Initialize app_storage

app_storage_set() Store data in key-value pair format

app_storage_get() Get key-value pairs

app_storage_erase() Erase a specific key-value pair

3. Saving LED status

When the LED lights are powered up, we may expect them to be set to the color and bright-
ness of last use. To achieve this function, we need to save the status of the lights after each
control and load the latest status when the driver is initialized. This status saving function is
implemented in the light_driver component. Every time an API in the light_driver
component is called to modify the LEDs’ status, the new status will be saved, which will be
loaded when the initialization API is called.
1. //Save LED status

2. if (app_storage_get(LIGHT_STATUS_STORE_KEY, &g_light_status,

3. sizeof(light_ status_t)) ! = ESP_OK) {

4. //Code Omitted

5. }

6. //Load LED status

100 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

7. if (app_storage_set(LIGHT_STATUS_STORE_KEY, &g_light_status,

8. sizeof(light_ status_t)) ! = ESP_OK) {

9. //Code Omitted

10. }

4. Initializing the driver

When adding the LED dimming driver to the smart light project, you need to write the code
to initialize the driver in the app_main() function. To use such code, a light_driver_
config_t parameter should be provided, which specifies the ESP32-C3 GPIOs used by the
five PWM channels, the fade time, the breathing cycles, the PWM frequency, the clock source
of the LEDC, the PWM duty resolution, etc. The driver initialization code in app_main()

is defined as function app_driver_init(), and called as follows:
1. void app_driver_init()

2. {

3. //Code Omitted

4. //Initialize LED dimming driver

5. light_driver_config_t driver_config = {

6. .gpio_red= LIGHT_GPIO_RED,

7. .gpio_green = LIGHT_GPIO_GREEN,

8. .gpio_blue = LIGHT_GPIO_BLUE,

9. .gpio_cold = LIGHT_GPIO_COLD,

10. .gpio_warm = LIGHT_GPIO_WARM,

11. .fade_period_ms = LIGHT_FADE_PERIOD_MS,

12. .blink_period_ms = LIGHT_BLINK_PERIOD_MS,

13. .freq_hz = LIGHT_FREQ_HZ,

14. .clk_cfg = LEDC_USE_APB_CLK,

15. .duty_resolution = LEDC_TIMER_11_BIT,

16. };

17. ESP_ERROR_CHECK(light_driver_init(&driver_config));

18. //Code Omitted

19. }

5. Controlling LED status

After initializing the LED dimming driver, we can use the APIs provided by the light_
driver component to control the LED lights. Combined with the button driver, the LED
lights can be turned on/off through a button. Here, we will focus on controlling the on/off
status, the color, and the color temperature.

(1) On/off status

The following API can be used to control the on/off status of the LED lights.

1. //Turn on the light

2. light_driver_set_switch(true);

Chapter 6. Driver Development 101

3. //Turn off the light

4. light_driver_set_switch(false);

(2) Color

After initializing the LED dimming driver and turning on the lights, the color of the LEDs
can be controlled based on RGB, HSL, or HSV color spaces. When using LED dimming APIs,
pay attention to the parameter value range of these APIs:

• HSV: Hue360, Saturation100, Value100.
• HSL: Hue360, Saturation100, Lightness100.
• RGB: Red255, Green255, Blue255.

The following APIs are used for adjusting all three components of RGB, HSL, or HSV color
space in one call. You can also adjust only one component using APIs listed in Table 6.1.
1. //RGB color control

2. light_driver_set_rgb(uint8_t red, uint8_t green, uint8_t blue);

3. //HSL color control

4. light_driver_set_hsl(uint16_t hue, uint8_t saturation, uint8_t lightness);

5. //HSV color control

6. light_driver_set_hsv(uint16_t hue, uint8_t saturation, uint8_t value);

(3) Color temperature

In addition to controlling the on/off status and color, light_driver APIs can also be used
to control the color temperature (but not available for simulated lights). The following API
can be used to change the color temperature and brightness:

1. light_driver_set_ctb(uint8_t color_temperature, uint8_t brightness);

Source code

Please refer to book-esp32c3-iot-projects/device firmware/2 light dri-

vers for the complete code to add the LED dimming driver and the button driver to the
smart light project . You can also check the running results after compiling the code and
flashing it onto the development board.

6.6 Summary
ESP32-C3 has a rich set of peripheral interfaces, which can be used in different application
scenarios, such as screen display, sensor data collection, audio playback, etc. For smart light
applications, LED PWM controllers are usually used to implement LED dimming drivers.

After learning the driver development steps in this chapter, you should be able to program
on your own to control LED lights. In subsequent chapters, we will introduce commonly
used wireless communication technologies and protocols in IoT, and how to apply them in
the smart light project.

102 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/2_light_drivers
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/2_light_drivers

Chapter
7

Wi-Fi Configuration and
Connection

In this chapter, we’ll focus on the specifications of Wi-Fi network configuration and connec-
tion, from the basics of Wi-Fi and Bluetooth to the common methods for configuring Wi-Fi
network. Then, examples will be given to help you better understand its operating mecha-
nism, and ways of smart Wi-Fi configuration. Finally, we’ll lead you to a practice of smart
Wi-Fi configuration with the Smart Light project based on ESP32-C3.

Since the wireless communication technology has gone through a long history, many docu-
ments have delved deeply into this topic. Therefore, this chapter will only provide a brief
introduction. For details, please see the references listed at the end of this book.

7.1 Basics of Wi-Fi
This section will walk you through the Wi-Fi technology from the following aspects:

• What is Wi-Fi?

• How does Wi-Fi evolve?

• What do the Wi-Fi concepts mean?

• How does Wi-Fi connection work?

7.1.1 Introduction to Wi-Fi

Wi-Fi is a trademark of wireless communication technology owned by the Wi-Fi Alliance
(WFA), which supervises Wi-Fi certification. It is a family of wireless network protocols
based on the IEEE 802.11 standards. Products passing rigorous testings will be given the
Wi-Fi CERTIFIED™ seal to prove that they have met industry-agreed standards for interop-
erability, security, and a range of application specific protocols.

Compared with other wireless communication technologies, Wi-Fi boasts wider coverage,
better penetrating ability through walls, and higher throughput.

7.1.2 Evolution of IEEE 802.11

As Wi-Fi users, we should have heard about IEEE 802.11 more or less. But what does it
exactly mean?

104

IEEE is the abbreviation of the Institute of Electrical and Electronics Engineers. 802 is a
committee in the institute for networking standards, also known as the LMSC – LAN/MAN
Standards Committee. The committee covers such a big family of standards that it needs
to be divided into groups devoted to specific areas. Each group has its own number (the
one following “802”, separated by a dot), so 802.11 refers to the 11th group of committee
802, which develops the Medium Access Control (MAC) protocols and Physical Layer (PHY)
specifications of wireless local area networks (WLANs). IEEE 802.11 has experienced several
“amendments”, as shown in Table 7.1.

Table 7.1. Generations of IEEE 802.11

Version
Frequency

Range (GHz)
Channel Bandwidth

(MHz)
Rate

(Mbit/s)
Modulation

Method
Alias

802.11a 5 20 54 OFDM2 —

802.11b 2.4 22 11 CCK3/DSSS4 —

802.11g 2.4 20 54 OFDM —

802.11n 2.4, 5 20, 40
72-600

(MIMO1:4×4)
OFDM Wi-Fi 4

802.11ac 5 20, 40, 80, 80+80, 160
433-1733

(MIMO:4×4)
OFDM Wi-Fi 5

802.11ax 2.4, 5 20, 40, 80, 80+80, 160
600-2401

(MIMO:4×4)
OFDMA5 Wi-Fi 6

Table notes:

1 MIMO: Multiple Input Multiple Output.

2 OFDM: Orthogonal Frequency Division Multiplexing.

3 CCK: Complementary Code Keying.

4 DSSS: Direct Sequence Spread Spectrum.

5 OFDMA: Orthogonal Frequency Division Multiple Access.

7.1.3 Wi-Fi Concepts

In this section, we’ll introduce the network technologies related to IEEE 802.11, including
the Open System Interconnection Reference Model (OSI/RM) and physical components of
IEEE 802.11.

Chapter 7. Wi-Fi Configuration and Connection 105

Open System Interconnection Reference Model (OSI/RM)
In OSI/RM, the computer network system is conceived as a seven-layer framework. Their
names and relationships are shown in Figure 7.1.

Figure 7.1. Architecture of OSI/RM

Physical components of IEEE 802.11
IEEE 802.11 architecture consists of four major physical components, as shown in Figure
7.2.

Figure 7.2. Physical components of IEEE 802.11

Wireless Medium (WM)
WMs refer to the physical layer where wireless MAC frame data is transmitted. Ini-
tially, two radio frequency (RF) physical layers and one infrared physical layer were
introduced, but the RF layers turned out to be more popular.

106 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Stations (STA)
Stations comprise all devices and equipments that are connected to the wireless LAN.
Battery-operated laptops and handheld computers are typical STAs, but “portable” is not
a must. In some cases, desktops are also connected to wireless LANs to avoid pulling
new cables.

Access Points (AP)
As a branch of STA, AP provides access to distribution services for associated STAs.

Distribution System (DS)
When several APs are connected to cover a larger area, they have to communicate with
each other to track the movements of mobile stations. This is conducted through the
distribution system, an external data network. It is responsible for transmitting data
frames to their destinations.

Building wireless networks
The physical components above constitute a wireless network. The basic building block
of an IEEE 802.11 network is the Basic Service Set (BSS). It comes in two categories, the
Independent BSS and the Infrastructure BSS, as shown in Figure 7.3.

Figure 7.3. Independent BSS and infrastructure BSS

Independent BSS
Stations in an independent BSS communicate with each other directly without AP.

Infrastructure BSS
In an infrastructure BSS, STAs must associate with an AP to obtain network services. APs
function as the control centre of the set. This is the most common network architecture.
Every STA needs to go through association and authorisation before joining a certain
BSS. Infrastructure BSS is the most common network architecture.

Network architectures are accompanied with identifications:

Chapter 7. Wi-Fi Configuration and Connection 107

BSS Identification (BSSID)
Each BSS has a physical address for identification, called BSSID. For an Infrastructure
BSS, the BSSID is the MAC address of the AP. It comes with a factory default value and
can be changed according a fixed naming format.

Service Set Identification (SSID)
Each AP has an identifier for user identification. In most cases, one BSSID is associated
with one SSID. It is usually a readable string, which is what we call the Wi-Fi name.

7.1.4 Wi-Fi Connection

An STA first searches for nearby wireless networks through active or passive scanning, then
establishes a connection with an AP after authentication and association, and finally accesses
the wireless LAN. Figure 7.4 shows the process of Wi-Fi connection.

Figure 7.4. Process of Wi-Fi connection

1. Scanning

An STA can actively or passively scan wireless networks.

Passive scanning
Passive scanning refers to discovering wireless networks nearby through monitoring the
beacon frames periodically sent by an AP. It is recommended when users need to save
power.

Active scanning
During active scanning, the STA actively sends out probe requests and receives probe
responses from the AP. It is further devided into two modes based on the involvement of
SSID.

Active scanning without SSID
The STA periodically sends out probe requests through supported channels to search

108 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

for wireless networks. APs that receive the probe request will return probe responses,
which carry the information of available wireless networks. This enables an STA to
obtain all the available wireless services nearby.

Active scanning with specific SSIDs
If the STA needs to configure a wireless network to be connected or has accessed a
wireless network before, it will periodically send out probe requests with configuration
information or the SSID of the accessed wireless network. When an AP with specific
SSID receives the request, it will return a probe response. In this way, an STA can
actively access a specified wireless network.

For hidden APs, active scanning with specific SSID is recommended.

2. Authentication

When the STA finds an available wireless network, it will select one of the APs with match-
ing SSID according to certain connection strategy, such as selecting the one with strongest
signal or with matching MAC address. The next step is authentication. There is open au-
thentication and non-open authentication.

Open authentication
Essentially, open authentication requires no authentication or encryption. Any STA can
access the network. The AP does not verify STA’s identity in this process, as shown in
Figure 7.5.

Figure 7.5. Process of open authentication

The STA sends a request for authentication, and the AP returns the result. If the result
reads “Success”, then the authentication is completed.

Non-open authentication
Non-open authentication includes shared key authentication, Wi-Fi Protected Access (WPA),
and Robust Security Network (RSN).

Shared key
Shared key authentication is based on the Wired Equivalent Privacy (WEP) method. It
is a basic encryption technology with security flaws.

Chapter 7. Wi-Fi Configuration and Connection 109

STAs and APs can only interpret the data transmitted between each other when they
have the same key configured. There are 64-bit keys and 128-bit keys. Users can
set up to four groups of different keys. Figure 7.6 shows the process of shared key
authentication.

Figure 7.6. Process of shared key authentication

The STA sends an authentication request to the AP. Then the AP generates a challenge
text and sends it to the STA. The STA uses its preconfigured keys to encrypt the text
and sends it back. The AP uses its preconfigured keys to decrypt the text and com-
pares it with the original text. If the two texts are identical, then the authentication is
completed.

Wi-Fi Protected Access (WPA)
WPA is an intermediate solution to replace WEP before the official release of IEEE
802.11i. It uses a new Message Integrity Check (MIC) algorithm to replace the CRC
algorithm in WEP. It also adopts the Temporal Key Integrity Protocol (TKIP) to generate
different keys for different MAC frames. TKIP is a transitional encryption protocol and
has proved of low security.

Robust Security Network (RSN)
The WFA calls RSN the WPA2. It adopts a new encryption method, the Counter Mode
with CBC-MAC Protocol (CCMP), a block security protocol based on the Advanced En-
cryption Standard (AES). We will expound on this later along with authorisation.

Wi-Fi Protected Access 3 (WPA3)
Although WPA2 consolidates Wi-Fi networks to a certain extent, new security vulnera-
bilities keep emerging, such as offline dictionary attacks, brute force attacks, and key
reinstallation attacks (KRACK). To this end, the WFA released the WPA3 in 2018, a new
generation of Wi-Fi encryption protocol that mitigates the risks in WPA2 and provides
new features. Compared with WPA2, WPA3 has the following advantages:

110 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

• The use of AES encryption is mandatory instead of TKIP.

• Management frames are protected.

• The more secure method, Simultaneous Authentication of Equals (SAE), is used to
replace the pre-shared key (PSK) authentication in WPA2.

First, SAE denies services for STAs that repeatedly try to connect to the AP, preventing
brute-force attacks or password cracking. Second, its forward secrecy function ensures
that the key will be changed frequently and automatically, so that even if the most
recent key is hacked, only a minimal amount of data will be exposed. Last, SAE con-
siders devices as peers. Either party can initiate a handshake and send authentication
information independently, cancelling the message exchange process, thus leaving no
opportunity for KRACKs.

• 192-bit security suite is used to strengthen password protection.

• HMAC-SHA-384 algorithm is used to export and confirm keys in the four-way hand-
shake phase.

• Galois-Counter Mode Protocol-256 (GCMP-256) is used to protect wireless traffic after
STAs go online.

• Galois Message Authentication Code-256 (GMAC-256) of GCMP is used to protect
multicast management frames.

• WPA3 introduces a Wi-Fi Enhanced Open authentication mode – the Opportunistic
Wireless Encryption (OWE) – which allows for connection without password, retaining
the facilitation for accessing open networks. It uses the Diffie-Hellman key exchange
algorithm to encrypt data on the Wi-Fi network, thereby protecting data exchange
between STAs and the Wi-Fi network.

3. Association

After the AP returns successful authentication result to the STA, the next step is association
to get full network access, as shown in Figure 7.7.

4. Authorisation

After scanning, authentication, and association, let’s focus on the last step – authorisation.
In this section, we’ll introduce the Extensible Authentication Protocol (EAP), and the key
agreement, the four-way handshake protocol.

Extensible Authentication Protocol (EAP)
EAP is the most basic security protocol for identity verification, which is not only a proto-
col, but also a protocol framework. Based on this protocol framework, various authenti-
cation methods are well supported. Supplicants send identity verification requests to the

Chapter 7. Wi-Fi Configuration and Connection 111

Figure 7.7. Process of association

Authenticator through EAP over LAN (EAPOL), and get allowed to use the network once
the verification succeeds. Figure 7.8 shows the architecture of EAP.

This book only touches the basics about EAP. To learn more, please refer to RFC 3748.

Figure 7.8. EAP architecture

• Supplicant: the entity that initiates an authentication request. For wireless networks,
an STA is a Supplicant.

• Authenticator: the entity that responds to an authentication request. For wireless
networks, an AP is an Authenticator.

• Backend Authentication Server (BAS): In some cases, such as in enterprise appli-
cations, Authenticator does not directly handle authorisation. Instead, it sends the
authentication request to the BAS. This is how the EAP extends its range of applica-
tion.

• Authentication, Authorization, and Accounting (AAA): another EAP-based proto-
col. The entity implementing this protocol is a certain type of BAS, for example, the
RADIUS server.

• EAP server: This is what actually handles authorisation. If there is no BAS, the Au-
thenticator plays as the EAP server, otherwise the BAS will serve the purpose.

112 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Key agreement
Robust Secure Network Association (RSNA) is a set of procedures defined in IEEE 802.11
to ensure wireless network security. It consists of data encryption and integrity verifi-
cation. RSNA uses the above mentioned TKIP and CCMP. The Temporary Key (TK) used
in TKIP and CCMP comes from the key derivation function defined by RSNA. Based on
IEEE 802.1X, RSNA also defines the Four-Way Handshake to generate keys for unicast
data encryption, and the Group Key Handshake for multicast data encryption.

But why do we need to derive keys? In the WEP encryption mode, all STAs use the same
WEP key for encryption, resulting in low security, while RSNA requires different STAs to
use different keys for encryption after associating with APs. Does this mean that the AP
needs to set different passwords for different STAs? Obviously, the answer is no. In real
life, we use the same password to associate different STAs with the same AP.

Then how can different STAs use different passwords? The password we set in an STA is
called Pairwise Master Key (PMK). It comes from the PSK, namely the password set in the
wireless router at home. It is set without any authentication server, and the corresponding
setting is WPA/WPA2-PSK. Figure 7.9 shows how a PMK is generated from the PSK.

Figure 7.9. Generation of PMK from PSK

In WPA2-PSK, PMK is identical with PSK. But in WPA3, it generates new PMK through the
SAE method based on the PMK from WPA2, to ensure that every STA has a unique PMK
at different stages. Figure 7.10 shows how PMK is generated through SAE.

SAE treats the Supplicant and the Authenticator as peers. Either of them can initiate
authentication. The two parties exchange data with each other to prove their knowledge
of the key and generate PMK. SAE includes two phases, Commit and Confirm. In the
Commit phase, both parties send SAE Commit frames for deducing the PSK. Then in
the Confirm phase, they send SAE Confirm frames to verify the PSK. Once verification
succeeds, PMK will be generated and the association will proceed.

Chapter 7. Wi-Fi Configuration and Connection 113

Figure 7.10. Generation of PMK with SAE

• Commit

The sender uses the Hunting and Pecking algorithm to generate a Password Element
(PWE) based on PSK and the MAC addresses of the sender and receiver. Then the scalar
integer and element coordinates are generated by the sender based on PWE and a random
value through elliptic curve operation. Upon receiving the commit frame, the receiver
verifies the frame, and uses both the local and received frame content to generate a Key
Confirmation Key (KCK) and PMK. The KCK will generate and verify the frame content in
the Confirm phase.

• Confirm

Both parties generate a verification code from the KCK, local and peer Scalars, and local
and peer PWEs through the same hash algorithm. If the codes turn out to be identical,
the verification passes.

After the STA and AP obtain PMK, they will start key derivation. During this process, the
AP and different STAs generate different keys, which are configured into hardware for
encryption/decryption. Since the AP and STAs need to re-generate these keys every time
they are associated, they are named Pairwise Transient Keys (PTK). AP and STA use the
EAPOL-Key frame to exchange Nonce and other messages, when the Four-Way Handshake
comes into play. The process is shown in Figure 7.11.

(1) The Authenticator generates a Nonce (ANonce), and sends it to the Supplicant in
EAPOL-Key (Message 1).

(2) Supplicant performs key derivation based on the ANonce, its own Nonce (SNonce)
and PMK, and Authenticator’s MAC address . Then it sends the Authenticator another
EAPOL-Key message (Message 2) that contains the SNonce. Message 2 also carries an
MIC value encrypted by KCK. Once the Authenticator gets the SNonce in Message 2, it

114 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 7.11. Process of Four-Way Handshake

performs calculations similar to that of the Supplicant to verify whether the message
returned is correct. If it is incorrect, which means the Supplicant’s PMK is wrong, the
handshake will be terminated.

(3) If the Supplicant’s PMK is correct, the Authenticator will also perform key derivation.
Later, the Authenticator sends the third EAPOL-Key message (Message 3) to the Sup-
plicant. This message carries the Group Transient Key (GTK, used to update the group
key encrypted by KEK) and MIC (encrypted by KCK). When the Supplicant receives
Message 3, it will check whether the PMK of the AP is correct by calculation.

(4) The Supplicant sends the last EAPOL-Key message (Message 4) to the Authenticator
for confirmation. Then both parties will use it to encrypt data.

So far, the Supplicant and Authenticator have completed key derivation and pairing. They
can eventually communicate with each other.

7.2 Basics of Bluetooth
This section will introduce Bluetooth from the following aspects:

• What is Bluetooth?

• How does Bluetooth evolve?

• What do the Bluetooth concepts mean?

• How does Bluetooth connection work?

Chapter 7. Wi-Fi Configuration and Connection 115

7.2.1 Introduction to Bluetooth

Bluetooth is a short-range wireless communication technology originally conceived by Eric-
sson in 1994. The goal of Bluetooth is to facilitate transmission and sharing of information
over a short distance without cable connections among mobile devices, embedded devices,
computer peripherals, and household appliances. Compared with other wireless communi-
cation technologies, Bluetooth boasts high security and easy connection.

NOTE: Why “Bluetooth”?

The word “Bluetooth” dates back more than a millennia to the Danish King Harald Blue-
tooth. King Harald is credited with the first unification of Scandinavia. Legend has it
that King Harald liked blueberries so much that his teeth were stained blue. So he was
called Bluetooth. In 1998, Intel, Nokia, Ericsson, and IBM established a Special Interest
Group (SIG) called Bluetooth. The word Bluetooth quickly gained popularity and became
synonymous with the short-range wireless communication technology.

Bluetooth adopts decentralised network structure, fast frequency hopping, and short packet
technology to support point-to-point and point-to-multipoint communication. It works in
the 2.4 GHz ISM (Industrial, Scientific, Medical) band, which is commonly used worldwide.
Bluetooth technology can be divided into two categories, Bluetooth Classic and Bluetooth
Low Energy.

Bluetooth Classic
Bluetooth Classic (BR/EDR) generally refers to modules that support the Bluetooth proto-
col below version 4.0, and are used for the transmission of large amounts of data such as
voice and music. Bluetooth Classic protocols have different profiles of personal area net-
works for different scenarios. Commonly used profiles are Advanced Audio Distribution
Profile (A2DP) for audio communication, Hands-Free Profile/Head-Set Profile (HFP/HSP)
for hands-free devices, Serial Port Profile (SPP) for text serial port transparent transmis-
sion, and Human Interface Device (HID) for wireless input/output devices.

Bluetooth Low Energy
Bluetooth Low Energy (LE) is a new type of ultra-low power wireless communication
technology, designed for low-cost, less complicated wireless body and personal area net-
works. It is worth mentioning that Bluetooth LE chips can be powered by button cells.
Together with microsensors, you can use the chips to build embedded or wearable sensors
and applications of sensor networks.

In terms of protocols, Bluetooth 1.1, 1.2, 2.0, 2.1, and 3.0 apply to Bluetooth Classic, Blue-
tooth 4.0 supports both Bluetooth Classic and Bluetooth LE, and all later versions employ
Bluetooth LE.

116 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

7.2.2 Bluetooth Concepts

This section introduces the network technologies related to Bluetooth, including the core
architecture and components in Bluetooth specifications.

Core architecture
The core system of Bluetooth is composed of Host, Controller, and Host Controller In-
terface (HCI). Host is used for application development, while Controller is for message
sending and receiving, physical connection management, and other basic features which
are implemented by dedicated Bluetooth chip manufacturers.

The original design is to run the Host and the Controller independently on two chips or
even systems, and they can communicate through the HCI. In this way, it is easier to
replace and upgrade either module. Although there are many chips that put both the
Host and the Controller together, they still follow this architecture, except that the HCI is
changed from a hardware communication port to a software one.

The Bluetooth LE protocol stack includes Physical Layer (PHY), Link Layer (LL), Logical
Link Control and Adaptation Protocol (L2CAP), Attribute Protocol (ATT), Security Man-
ager Protocol (SMP), Generic Attribute Profile (GATT), and Generic Access Profile (GAP),
as shown in Figure 7.12.

Figure 7.12. Protocol stack layers of Bluetooth LE

• Physical Layer (PHY) specifies the wireless frequency band and modulation mode
used by Bluetooth LE. How the PHY performs determines the power consumption,
sensitivity, and selectivity of the Bluetooth LE chip and influences other radio frequency
indicators.

• Link Layer (LL) only sends or receives data, leaving data analysis to GAP or ATT at the
upper layer. LL is at the core of the Bluetooth LE protocol stack, as it decides which
radio frequency channel to choose for communication, how to identify data packets

Chapter 7. Wi-Fi Configuration and Connection 117

transmitted through the air, when to send data packets, how to ensure data integrity,
and how to manage and control links, how to receive and retransmit ACKs, etc.

• Host Controller Interface (HCI) provides a means of communication between the
Host and the Controller. This layer can be implemented either by a hardware interface
such as UART or USB in dual-chip architectures, or through a software API in single-
chip architectures.

• Logical Link Control and Adaptation Protocol (L2CAP) provides connection-oriented
and connectionless data services to upper layer protocols with protocol multiplexing
capability, segmentation and reassembly operation, and group abstractions. It also
permits per-channel flow control and retransmission.

• Attribute Protocol (ATT) defines data for user commands and command operations,
such as reading or writing certain data. Bluetooth LE introduces the concept of at-
tributes, which are used to describe data in a piece. Besides, ATT also defines the ATT
commands that data can use. It is the layer that you will most frequently deal with.

• Security Manager Protocol (SMP) is responsible for the encryption and security of
Bluetooth LE connections, without affecting user experience.

• Generic Attribute Profile (GATT) standardises the data content in attributes, and use
the concept of groups to classify and manage attributes. Although the BLE protocol
stack can operate without GATT, its interoperability will be compromised. It is GATT
and a rich set of profiles that frees Bluetooth LE from the compatibility problem faced
by other wireless protocols such as ZigBee.

• Generic Access Profile (GAP) defines effective data packets in LL, offering an easiest
way to analyse LL payload. It is limited to features such as broadcasting, scanning,
and initiating connections.

Roles of Bluetooth
Bluetooth can be an Advertiser, a Scanner, or an Initiator. A master device plays the role
of Initiator and Scanner, while a slave device plays the role of Advertiser.
Bluetooth communication refers to the communication between two or more Bluetooth
devices. It only occurs between masters and slaves, as slave devices cannot communicate
directly.

Master mode
Master (or “central”) devices scan for slaves and initiate connection. In theory, if Blue-
tooth LE Mesh is not used to enable many-to-many device communication, only piconets
can be established among devices.

A device with Bluetooth technology can switch between master mode and slave mode.

118 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

It normally works in slave mode and waits for master devices to connect. When needed,
it switches to master mode and calls other devices. To initiate a call in master mode,
a Bluetooth device needs to know the Bluetooth address and pairing password of the
other device, and start calling after pairing successfully.

Slave mode
Slave (or “peripheral”) devices advertise and wait for connections. Once connected,
slaves can exchange data with the master.

In summary, a master can search for slaves and actively connects with them, while a slave
cannot initiate any connection but to wait to be connected.

Building Bluetooth networks
Now that we’ve learned about master and slave, let’s take a look at how to build Bluetooth
networks. According to topological structures, Bluetooth networks can be divided into
piconets, scatternets, and mesh networks.

Piconet
Every time a Bluetooth wireless link is formed, it is within a context of piconet. A pi-
conet consists of two or more devices that occupy the same physical channel, which
means the devices are synchronised according to a common clock and frequency hop-
ping sequence. Figure 7.13 shows the piconet topology.

Figure 7.13. Piconet topology

Scatternet
A scatternet is formed when multiple piconets overlap. Figure 7.14 shows the scatternet
topology.

Each piconet that constitutes a scatternet maintains its own master. The master of one
piconet may act as the slave of another piconet at the same time. In Figure 7.14, the
mobile phone is the master of the left piconet as well as the slave of the right piconet.

Mesh
Bluetooth Mesh was born after Bluetooth 4.0. It is a Bluetooth LE network used to
establish many-to-many device communication. It allows the creation of large-scale

Chapter 7. Wi-Fi Configuration and Connection 119

Figure 7.14. Scatternet topology

networks, where dozens, hundreds, or even thousands of Bluetooth mesh devices can
transmit data with each other. Bluetooth mesh is not the focus of this book, so you only
need to know its definition for now.

7.2.3 Bluetooth Connection

Bluetooth first searches for nearby devices through advertising or scanning, then establishes
a connection, and finally form a network for data transmission.

1. Slave advertising

Usually, the peripheral device (slave) advertises itself and waits for the central device (mas-
ter) to discover it and establish GATT connection for more exchange. In some cases, the
peripheral only disseminates its own information to multiple central devices, without the
need for connection.

To be discovered by a master, a slave will periodically send out advertising packets at an
interval of t. We call every advertising packet sent an “advertising event”, so t is also called
the advertising event interval, as shown in Figure 7.15.

Figure 7.15. Slave advertising interval

120 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Advertising events occur once in a while, and each event lasts for a period. The Bluetooth
chip only enables the radio frequency module to send packets during the event, hence the
relatively high power consumption. At other times, the chip goes idle, so the average power
consumption is quite low.

Each advertising event contains three packets for the same message to be advertised on
channel 37, 38, and 39 simultaneously. The process of slave advertising event is shown in
Figure 7.16.

Figure 7.16. Slave advertising event

2. Master scanning

Scanning refers to the process when a master tries to find other Bluetooth LE devices within
a certain range using advertising channels. Different from advertising, no interval or channel
is set for scanning. The master may customise its own settings.

Passive scanning
In passive scanning, the scanner only listens to advertising packets without sending any
data to the advertiser., as shown in Figure 7.17.

Once the scanning parameters are set, the master may send commands in the protocol
stack to start scanning. During the process, if the controller receives an advertising packet
that meets the filter policy or other constraints, it will report an event to the master. In
addition to the advertiser’s address, the event also includes the data and the received
signal strength indication (RSSI) of the advertising packet. Developers can estimate the
signal path loss based on the RSSI and the transmission power of the advertising packet.
This feature can be used to develop anti-lost trackers and positioning solutions.

Active scanning
In active scanning, the master can capture not only the advertising packets sent by slaves
but also the scan response packets, and distinguish the two types. See Figure 7.18 for the
process of active scanning.

Chapter 7. Wi-Fi Configuration and Connection 121

Figure 7.17. Passive scanning

Figure 7.18. Active scanning

After the controller receives any data, it will report an event to the master, containing the
advertising type of the LL packet. The master can thereby decide whether to connect or
scan the slave, and distinguish advertising packets from scan response packets.

3. Master Connection

(1) The peripheral device starts advertising. Within the T IFS after sending an advertising
packet, it enables radio frequency to receive packets from the central device. (T IFS:
Inter Frame Space, the time interval between two packet transmissions on the same
channel)

122 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

(2) The central device scans for advertising. Within the T IFS after receiving the advertis-
ing packet, if it enables scan response, it will reply to the peripheral device.

(3) Once the peripheral device receives scan response, it will return an ACK packet and
prepare to receive data.

(4) If the central device does not receive the ACK packet, it will continue sending scan
responses until it times out. During this period, only one ACK packet being received is
enough to establish the connection.

(5) Now that the two devices are connected, they start communicating. The central device
will send data packets to the peripheral at connection intervals, starting from the time
when the advertising packet is received. The data packets are used to synchronise
the clocks of the two devices and establish communication in master-slave mode. The
process is as follows:

a. Every time the peripheral device receives a packet from the central device, it resets
the starting point to synchronise with the central device (service synchronsied with
the client).

b. Bluetooth LE communication is established in master-slave mode. The central de-
vice becomes the master, and the peripheral device becomes the slave. A slave can
only send data back to the master within a specified time after the master sends a
packet to it.

c. Connection is established.

d. The peripheral device automatically stops advertising, and it can no longer be
found by other devices.

e. During the interval between packet transmissions by the central device, the periph-
eral device may send multiple advertising packets.

The communication sequence is shown in Figure 7.19.

Figure 7.19. Communication sequence

Chapter 7. Wi-Fi Configuration and Connection 123

To be disconnected, the central device only needs to stop sending packets. It can write
the MAC address of the peripheral device into flash, SRAM, or other storage devices to
keep monitoring the address, and reestablish communication when it receives advertising
packets from the peripheral again. In order to save power, the slave will not send advertising
packets if there is no data to be transmitted, and the two parties will be disconnected due to
connection timeout. At this time, the central device needs to start monitoring, so that when
the slave needs to send data, they can connect again.

7.3 Wi-Fi Network Configuration
With the development of IoT, more and more devices get connected via Internet. However,
such devices do not have rich HCIs as smartphones and tablets. To connect them to the Inter-
net, users cannot directly enter the SSID and password of the router. How to empower such
devices, connecting them to the Internet or LANs using the router? This is one of the impor-
tant targets of Wi-Fi devices. This section will cover some common network configuration
methods.

7.3.1 Wi-Fi Network Configuration Guide

Network configuration is to provide SSID and password to Wi-Fi devices, so that they can
connect to a specified AP and join its Wi-Fi network.

The final goal here is to send the SSID and password of the AP to the Wi-Fi device in
different ways, and connect the device to the specified Wi-Fi network to join the LAN or
Internet. Figure 7.20 shows the process of Wi-Fi network configuration.

Figure 7.20. Process of Wi-Fi configuration

The IoT devices waiting for connection also need to be associated with an account, so here
come some new concepts:

• Network configuration in a narrow sense: A Wi-Fi device obtains the AP information
(SSID, password, etc.) and connects to the AP.

• Binding: Associating user’s application accounts with the configured device.
• Network configuration in a broad sense: Network configuration in a narrow sense

+ binding.

This section will focus on network configuration in a narrow sense, thus omitting the binding
process. At present, the most popular methods to configure networks are SoftAP, SmartCon-
fig, and Bluetooth.

124 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

7.3.2 SoftAP

1. Introduction

SoftAP is a traditional method. First, the IoT device to be configured establishes an AP. The
user connects a smartphone, tablet, or other devices with HCIs to this AP, and sends informa-
tion about the network providing device. Then, the IoT device looks for the corresponding
network and connects with it. Figure 7.21 shows the steps of SoftAP network configuration.

Figure 7.21. Steps of SoftAP network configuration

The SoftAP mechanism connects devices directly to the LAN without routers, thereby pre-
venting router compatibility issues. This makes it easier to successfully configure the net-
work compared with SmartConfig. But the downside is that there is an extra step for con-
nection, as we need to manually switch to the IoT SoftAP in the Wi-Fi list. If we want to
access cloud services, we still need a router. Some smartphones may automatically switch
APs, but with iOS 11.0 or previous versions, we need to do the extra settings manually.

2. Configuration

Figure 7.22 indicates how to configure networks via SoftAP.

In-depth introduction to SoftAP will be given later together with Wi-Fi programming.

7.3.3 SmartConfig

1. Introduction

SmartConfig allows smartphones to fill the SSID and password in the unencrypted header
of the MAC packet according to a certain encoding format, and send them in segments to
the IoT device in multiple times by broadcasting and multicasting. Generally, we need to
install an application on the smartphone for protocol interaction between the two parties.
The steps of SmartConfig network configuration are shown in Figure 7.23.

After the receiver enables SmartConfig, the IoT device starts monitoring data on the router
from channel 1. Once detecting data packets that meet the rules, it stops switching and
stays on the current channel to receive all the data. Otherwise, the IoT device automatically
switches to the subsequent channels until channel 13, and start over from channel 1.

The frame format of MAC layer in IEEE 802.11 allows for clear identification of LL payload
data, which includes the header and data of the network layer. This makes it possible to
immediately extract and calculate the length of the payload data as soon as the MAC frames

Chapter 7. Wi-Fi Configuration and Connection 125

are received. The payload data here is usually the password. Figure 7.24 shows the packet
structure of SmartConfig network configuration.

Figure 7.22. Network configuration via SoftAP

126 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 7.23. Steps of SmartConfig network configuration

Figure 7.24. Packet structure of SmartConfig network configuration

Table 7.2 explains the fields of the data packet of SmartConfig network configuration.

Table 7.2. Fields of the data packet of SmartConfig network configuration

Data Frame Description

DA Target MAC Address

SA Source MAC Address

LENGTH Payload Data Length

LLC LLC Head

SNAP 3 B for Manufacturer Code and 2 B for Protocol Type

DATA Payload Data

FCS Frame Check Sequence

The sender usually uses the following methods to send data.

UDP broadcasting
The MAC frame format of IEEE 802.11 ensures that the DA, SA, LENGTH, LLC, SNAP,
and FCS fields are always visible to wireless signal monitors to acquire valid information,
regardless of whether the channels are encrypted. When broadcasting, the sender is lim-
ited by the operating system, leaving only the LENGTH field at its disposal. However, by
specifying a length-encoded communication protocol, a LENGTH field is enough for the
sender to transmit the data needed.

Chapter 7. Wi-Fi Configuration and Connection 127

UDP multicasting
The multicast address is a reserved class D address, with a range of 224.0.0.0 to 239.255.
255.255. The mapping between IP and MAC addresses is accomplished by setting the
first 25 bits of the MAC address to 01.00.5E, while the last 23 bits of the MAC address
corresponding to the bits of the IP address. As a result, the sender can encode data in the
last 23 bits of the multicast IP and transmit it through the multicast packet for the receiver
to decode.

SmartConfig offers user-friendly, smooth experience, but it places stringent requirements
on the compatibility of smartphones and routers. For example, some routers may disable
broadcast/multicast packet forwarding by default, preventing devices from receiving packets
forwarded by the router. In other cases, different frequency bands used by smartphones and
IoT devices can also result in configuration failure. If a smartphone is connected to a router
using a 5 GHz frequency band, a device using the 2.4 GHz band may not be able to receive
data. Such uncontrollable factors can significantly reduce overall compatibility and make it
hard to successfully configure the network.

2. Configuration

The SmartConfig mechanisms developed by Espressif are:

• ESP-TOUCH V2: UDP broadcast and multicast encoding.
• ESP-TOUCH: UDP broadcast encoding.
• AIRKISS: WeChat mini program.

Source code

In-depth introduction to SmartConfig will be given later together with Wi-Fi pro-
gramming. Visit https://github.com/espressif/esp-idf to find the example code for
examples/wifi/smart config.

7.3.4 Bluetooth

1. Introduction

If the IoT device to be configured features Bluetooth, the network binding information can
be sent via Bluetooth channel.

The principle behind the network configuration by Bluetooth is similar to that by SoftAP,
except that the communication method used for transmitting Wi-Fi information is changed
from Wi-Fi (AP mode) to Bluetooth. The IoT device to be configured creates a Bluetooth pro-
file. The user then connects smartphones, tablets, or other devices with HCIs to it through
a Bluetooth channel, and sends the information needed for network configuration. After
receiving the information, the IoT device looks for corresponding AP and connects with it.

128 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf/tree/master/examples/wifi/smart_config

The steps of Bluetooth network configuration are shown in Figure 7.25.

Figure 7.25. Steps of Bluetooth network configuration

The advantage of Bluetooth network configuration is that it eliminates the compatibility
issues related to routers, producing higher connection rate. It can also discover and connect
devices directly, so there is no need to turn on the device and connect to its own AP. However,
the compatibility between the Bluetooth module and the mobile phone may affect network
configuration. Additionally, using Bluetooth modules will increase the cost of the device.

2. Configuration

ESP32-C3 chip features both Wi-Fi and Bluetooth LE, thus supporting different network
configuration methods. When it comes to Bluetooth network configuration, ESP32-C3 offers
a comprehensive solution called BluFi. Figure 7.26 indicates how to configure networks via
BluFi.

Figure 7.26. Network configuration via BluFi

Source code

In-depth introduction to Bluetooth network configuration will be given later together with
Wi-Fi programming. Visit https://github.com/espressif/esp-idf to find the example code
for examples/bluetooth/blufi.

Chapter 7. Wi-Fi Configuration and Connection 129

https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf/tree/master/examples/bluetooth/blufi

7.3.5 Other Methods

1. Direct network configuration

Direct network configuration refers to sending SSID and password directly to IoT devices
through peripheral interfaces such as UART, SPI, SDIO, and I2C according to a certain com-
munication protocol. It is also known as wired network configuration. Once the IoT device
receives the SSID and password, it connects to the AP and then returns the connection result
through the master interface.

Moreover, some devices come with pre-set Wi-Fi information, such as SSID and password.
When such devices are started in specified Wi-Fi environment, they can automatically con-
nect to the corresponding AP. Such devices are typically used in large-scale networks, factory
testing, or industrial scenarios. The steps of direct network configuration are shown in Fig-
ure 7.27.

Figure 7.27. Steps of direct network configuration

This method adopts a software solution and is easy to implement. It is well-suited for
devices with Wi-Fi chips or connected by transmission lines of other protocols. However,
transmission lines must be pre-installed between systems.

The Espressif AT (ESP-AT) command firmware provided by Espressif can be directly used in
mass-produced IoT applications. Developers can easily join wireless networks by running
the Wi-Fi commands. For details, please refer to ESP-AT User Guide.

2. RouterConfig

RouterConfig is based on Wi-Fi Protected Setup (WPS), a standard introduced by the Wi-Fi
Alliance to address the complex process of configuring wireless network encryption and au-
thentication settings. The goal of WPS is to simplify Wi-Fi security and network management
for users. The standard offers two methods, Personal Identification Number (PIN) method
and Push Button Configuration (PBC) method. Figure 7.28 shows the steps of RouterConfig.

Figure 7.28. Steps of RouterConfig

The process is relatively straightforward, but it requires both the router and the device to

130 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://docs.espressif.com/projects/esp-at/en/latest/esp32/index.html

support WPS. Unfortunately, many users neglect encryption security settings due to the cum-
bersome steps involved, which can lead to serious security issues. As a result, an increasing
number of routers are abandoning or disabling support for WPS by default. The method has
become less popular in recent years.

Source code

ESP-IDF, the official IoT development framework by Espressif, provides an example of this
network configuration solution. The process there is quite simple. Visit https://github.
com/espressif/esp-idf to see the example in examples/wifi/wps.

3. ZeroConfig

ZeroConfig is a method of using one connected device to configure the network for another
one. This method does not involve smartphones, as other devices like smart speakers can be
used instead.

To initiate the process, the device to be connected sends its MAC address to the networked
device through a custom message. The networked device then responds by sending back its
saved router SSID and password via another custom message. After connecting, the device
can perform further configuration such as external network binding. The steps of ZeroConfig
network configuration are shown in Figure 7.29.

Figure 7.29. Steps of ZeroConfig

Since the networked device stores the SSID and password of the router, users do not need to
enter them manually. The configuration will be easier, thus providing better user experience.
However, this method cannot be widely adopted, as there must be networked devices con-
nected with the router. At the same time, because mobile applications have limited access,
it is impossible to assemble or receive Wi-Fi management frames through third-party pro-
grams. Therefore, smartphones can only be used to implement this method under certain
circumstances.

Chapter 7. Wi-Fi Configuration and Connection 131

https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf/tree/master/examples/wifi/wps

4. Phone AP network configuration

Phone AP network configuration refers to setting a smartphone as an AP with a unique
name and password, connecting the IoT device to the AP and sending network binding
information. Figure 7.30 shows the steps of phone AP network configuration.

Figure 7.30. Steps of phone AP network configuration

Phone AP network configuration does not require the IoT device to support AP mode, so
users do not have to do much development work on the device. It can be used with Smart-
Config (simultaneously), making it a good candidate for backup network configuration.
However, the user experience provided is barely satisfying. Many users struggle with setting
the AP name of the smartphone or even enabling the phone AP. Particularly on iOS de-
vices, the application cannot automatically create an AP, so users have to manually modify
the device name and enable the AP. As a result, this method is not suitable for consumer
devices.

In addition to the configuration methods above, Espressif also supports Wi-Fi Easy Connect,
also known as Device Provisioning Protocol (DPP). For more information, please visit https:
//bookc3/espressif.com/esp-dpp.

7.4 Wi-Fi Programming
This section provides an overview of Wi-Fi APIs, covering how to use the APIs, to establish
STA connection, and to connect in a smart way.

When developing a Wi-Fi application, the most efficient way is to adapt a similar example
for your own requirements. Therefore, if you want to create a robust application, we suggest
that you read this section and do the practices before getting started with your own project.

7.4.1 Wi-Fi Components in ESP-IDF

1. Features

Wi-Fi components can be used to configure and monitor the Wi-Fi network connection of
ESP32-C3. The following features are supported.

• STA mode: aka station mode or Wi-Fi client mode. ESP32-C3 is connected to the AP
in this mode.

• AP mode: aka SoftAP mode or access point mode. The AP is connected to ESP32-C3
in this mode.

132 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://bookc3/espressif.com/esp-dpp
https://bookc3/espressif.com/esp-dpp

• AP-STA coexistence mode: ESP32-C3 is connected to another AP as an AP.
• Security standards for the modes above: WPA, WPA2, WPA3, WEP, etc.
• Scanning for APs, including active and passive scanning.
• Promiscuous mode for monitoring IEEE 802.11 Wi-Fi packets.

2. APIs

esp_wifi.h defines the APIs for Wi-Fi components, as shown in Table 7.3.

Table 7.3. APIs for Wi-Fi components

Function Name Description

esp_wifi_init()
Initialise resources for the Wi-Fi driver, such as Wi-Fi
control structures and Wi-Fi tasks

esp_wifi_deinit()
Free resources allocated in esp_wifi_init() and
stop Wi-Fi tasks

esp_wifi_set_mode() Set the WiFi operating mode for ESP32-C3

esp_wifi_get_mode() Get the WiFi operating mode of ESP32-C3

esp_wifi_start() Start Wi-Fi according to current configuration

esp_wifi_stop() Stop Wi-Fi according to current configuration

esp_wifi_connect() Connect ESP32-C3 to the AP

esp_wifi_disconnect() Disconnect ESP32-C3 from the AP

esp_wifi_scan_start() Scan for all available APs

esp_wifi_scan_stop() Stop the scan in progress

esp_wifi_scan_get_ap_num() Get the number of APs found by ESP32-C3

esp_wifi_scan_get_ap_records() Get the information about APs found by ESP32-C3

esp_wifi_set_config() Set the configuration of the ESP32-C3 STA or AP

esp_wifi_get_config() Get the configuration of the ESP32-C3 STA or AP

3. Programming model

The ESP32-C3 Wi-Fi programming model is depicted in Figure 7.31.

The Wi-Fi driver can be considered a black box that knows nothing about upper-layer code,
such as TCP stacks, application tasks, and event tasks. The application task (code) generally
calls Wi-Fi driver APIs to initialise Wi-Fi and handles Wi-Fi events when necessary. The Wi-Fi
driver receives API calls, handles them, and posts events in the application.

Wi-Fi event handling is based on the esp_event library. Events are sent by the Wi-Fi driver

Chapter 7. Wi-Fi Configuration and Connection 133

Figure 7.31. ESP32-C3 Wi-Fi programming model

to the default event loop. Applications may handle these events in callbacks registered using
esp_event_handler_register(). Wi-Fi events are also handled by the esp_netif

component to provide a set of default behaviors. For example, when a Wi-Fi station connects
to an AP, esp_netif will automatically start the Dynamic Host Configuration Protocol
(DHCP) client by default.

7.4.2 Exercise: Wi-Fi Connection

1. Put ESP32-C3 into STA mode, and connect to an AP.

When operating in STA mode, ESP32-C3 can connect to an AP as an STA.

The BSS based on the central AP allows for multiple STAs to build a wireless network, with
the AP forwarding all communications within the network. In this mode, the device is able
to access both the external and internal network directly, using the Internet Protocol (IP)
address assigned by the AP. Figure 7.32 explains Wi-Fi STA mode.

Figure 7.32. Wi-Fi STA mode

2. Use ESP-IDF components to connect devices to routers.

Figure 7.33 shows how to use ESP-IDF components to connect devices to routers.

(1) Initialisation. See 1.1, 1.2, and 1.3 in Figure 7.33.

a. Initialise LwIP. Create an LwIP core task and initialise LwIP-related work.

1. ESP_ERROR_CHECK(esp_netif_init());

134 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 7.33. Using ESP-IDF components to connect devices to routers

Chapter 7. Wi-Fi Configuration and Connection 135

b. Initialise event. As introduced before, Wi-Fi event handling is based on the esp_event
library, assisted by the esp_netif component. The code to initialise the event is as follows:
1. ESP_ERROR_CHECK(esp_event_loop_create_default());

2. esp_netif_create_default_wifi_sta();

3. esp_event_handler_instance_t instance_any_id;

4. esp_event_handler_instance_t instance_got_ip;

5. ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,

6. ESP_EVENT_ANY_ID,

7. &event_handler,

8. NULL,

9. &instance_any_id));

10. ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,

11. IP_EVENT_STA_GOT_IP,

12. &event_handler,

13. NULL,

14. &instance_got_ip));

c. Initialise Wi-Fi. Create the Wi-Fi driver task, and initialise the Wi-Fi driver. The code to
initialise Wi-Fi is as follows:
1. wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();

2. ESP_ERROR_CHECK(esp_wifi_init(&cfg));

(2) Configuration. Once the Wi-Fi driver is initialised, you can start configuration. At this
stage, the driver is in STA mode, so you may call esp_wifi_set_mode(WIFI_MODE_STA)
to put ESP32-C3 into STA mode. Refer to the code below:
1. wifi_config_t wifi_config = {

2. .sta = {

3. .ssid = EXAMPLE_ESP_WIFI_SSID,

4. .password = EXAMPLE_ESP_WIFI_PASS,

5. },

6. };

7. ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));

8. ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config));

(3) Startup. Call esp_wifi_start() to start the Wi-Fi driver.

1. ESP_ERROR_CHECK(esp_wifi_start());

The Wi-Fi driver posts WIFI_EVENT_STA_START to the event task; then, the event task
will do some routine work and call the application event callback function.

The application event callback function relays WIFI_EVENT_STA_START to the application
task, and then we call esp_wifi_connect().

(4) Connection. Once esp_wifi_connect() is called, the Wi-Fi driver will start the
internal scan/connection process.

If the internal scan/connection is successful, WIFI_EVENT_STA_CONNECTED will be gen-

136 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

erated. In the event task, the DHCP client will be started and trigger the DHCP process.
Refer to the code below:
1. static void event_handler(void* arg, esp_event_base_t event_base,

2. int32_t event_id, void* event_data)

3. {

4. if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {

5. esp_wifi_connect();

6. } else if

7. (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {

8. if (s_retry_num < EXAMPLE_ESP_MAXIMUM_RETRY) {

9. esp_wifi_connect();

10. s_retry_num++;

11. ESP_LOGI(TAG, "retry to connect to the AP");

12. } else {

13. xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);

14. }

15. ESP_LOGI(TAG, "connect to the AP fail");

16. } else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {

17. ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;

18. ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));

19. s_retry_num = 0;

20. xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);

21. }

22. }

(5) Getting IP. Once the DHCP client is initialised, the “getting IP” phase will begin. If the
IP address is successfully received from the DHCP server, IP_EVENT_STA_GOT_IP will be
triggered and commonly handled in event task.

In the application event callback, IP_EVENT_STA_GOT_IP is relayed to the application
task. For LwIP-based applications, this marks a special event which means that everything
is ready for the application to perform subsequent tasks. But remember not to start the
socket-related work before receiving the IP.

(6) Disconnection. Wi-Fi connection may fail because of active disconnection, wrong pass-
word, AP not found, etc. In this case, WIFI_EVENT_STA_DISCONNECTED will arise and
provide the reason for the failure, such as esp_wifi_disconnect() being called to ac-
tively disconnect.

1. ESP_ERROR_CHECK(esp_wifi_disconnect());

(7) IP Changed. If the IP address is changed, IP_EVENT_STA_GOT_IP will be triggered
with ip_change set to true.

(8) Cleanup, including breaking Wi-Fi connection, stopping and unloading the Wi-Fi driver,
etc. The code is as follows:

Chapter 7. Wi-Fi Configuration and Connection 137

1. ESP_ERROR_CHECK(esp_event_handler_instance_unregister(IP_EVENT,

2. IP_EVENT_STA_GOT_IP,

3. instance_got_ip));

4. ESP_ERROR_CHECK(esp_event_handler_instance_unregister(WIFI_EVENT,

5. ESP_EVENT_ANY_ID,

6. instance_any_id));

7. ESP_ERROR_CHECK(esp_wifi_stop());

8. ESP_ERROR_CHECK(esp_wifi_deinit());

9. ESP_ERROR_CHECK(esp_wifi_clear_default_wifi_driver_and_handlers(

10. station_netif));

11. esp_netif_destroy(station_netif);

7.4.3 Exercise: Smart Wi-Fi Connection

1. SoftAP

The wifi_provisioning components provided by ESP32-C3 can transmit SSID and pass-
word of the AP through SoftAP or Bluetooth LE, and then use them to connect to the AP.

(1) APIs

The APIs for wifi_provisioning are defined in esp-idf/components/wifi provi

sioning/include/wifi provisioning/manager.h, as shown in Table 7.4.

Table 7.4. APIs for wifi provisioning components

API Description

wifi_prov_mgr_init()
Initialise provisioning manager interface ac-
cording to current configuration

wifi_prov_mgr_deinit() Release provisioning manager interface

wifi_prov_mgr_is_provisioned() Check the provisioning status of ESP32-C3

wifi_prov_mgr_start_provisioning() Start the provisioning service

wifi_prov_mgr_stop_provisioning() Stop the provisioning service

wifi_prov_mgr_wait() Wait for the provisioning service to finish

wifi_prov_mgr_disable_auto_stop()
Disable auto stopping of the provisioning ser-
vice upon completion

wifi_prov_mgr_endpoint_create()
Create an endpoint and allocate internal re-
sources for it

wifi_prov_mgr_endpoint_register() Register a handler for the created endpoint

wifi_prov_mgr_endpoint_unregister() Unregister the handler for the created endpoint

wifi_prov_mgr_get_wifi_state()
Get the state of the Wi-Fi STA during
provisioning

wifi_prov_mgr_get_wifi_disconnect_reason()
Get the reason code for Wi-Fi STA disconnection
during provisioning

138 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf/blob/master/components/wifi_provisioning/include/wifi_provisioning/manager.h
https://github.com/espressif/esp-idf/blob/master/components/wifi_provisioning/include/wifi_provisioning/manager.h

(2) Program structure

• Initialisation:
1. wifi_prov_mgr_config_t config = {

2. .scheme = wifi_prov_scheme_softap,

3. .scheme_event_handler = WIFI_PROV_EVENT_HANDLER_NONE

4. };

5.

6. ESP_ERR_CHECK(wifi_prov_mgr_init(config));

• Checking the provisioning status:

1. bool provisioned = false;

2. ESP_ERROR_CHECK(wifi_prov_mgr_is_provisioned(&provisioned));

• Starting provisioning service:
1. const char *service_name = "my_device";

2. const char *service_key = "password";

3.

4. wifi_prov_security_t security = WIFI_PROV_SECURITY_1;

5. const char *pop = "abcd1234";

6.

7. ESP_ERR_CHECK(wifi_prov_mgr_start_provisioning(security, pop, service_name,

8. service_key));

• Releasing resources for provisioning.

Once the provisioning service is complete, the main application will release the re-
sources for provisioning and start executing its own logic. There are two ways to do
this. The simpler way is to call wifi_prov_mgr_wait(). See the code below:
1. //Wait for the provisioning service to finish

2. wifi_prov_mgr_wait();

3.

4. //Release the resources for provisioning

5. wifi_prov_mgr_deinit();

The other way is to use the callback function of the event. See the code below:
1. static void event_handler(void* arg, esp_event_base_t event_base,

2. int event_id, void* event_data)

3. {

4. if (event_base == WIFI_PROV_EVENT && event_id == WIFI_PROV_END) {

5. //Release the resources for provisioning upon completion

6. wifi_prov_mgr_deinit();

7. }

8. }

(3) Functional verification

To get started, install ESP SoftAP Provisioning on your phone. Next, turn on the Wi-Fi and
power on the device. Ensure that the output log by the serial port (see Figure 7.34) contains

Chapter 7. Wi-Fi Configuration and Connection 139

information beginning with PROV_.

NOTE

You may download the APP at https://www.espressif.com/en/support/download/apps.

Figure 7.34. Output log by the serial port

a. Startup

Open the application on your phone and tap “Start Provisioning”. Then you will find the
device PROV DAED2CXXXXX on the screen (refer to Figure 7.35).

Figure 7.35. Startup Figure 7.36. SoftAP connection

140 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://www.espressif.com/en/support/download/apps

b. Connection

Tap “Connect” to navigate to the Wi-Fi setting interface. Select to connect the device
PROV DAED2CXXXXX. If connected, you will see the screen as Figure 7.36.

The output log is as follows:
I (102906) wifi:station: 88:40:3b:40:c1:13 join, AID=1, bgn, 40U
I (103056) esp_netif_lwip: DHCP server assigned IP to a station, IP is: 192.168.4.2
I (124286) wifi:station: 88:40:3b:40:c1:13 leave, AID = 1, bss_flags is 134259, bss:0x3fca7844
I (124286) wifi:new: <1,0>, old: <1,1>, ap: <1,1>, sta: <0,0>, prof:1
I (149036) wifi:new: <1,1>, old: <1,0>, ap: <1,1>, sta: <0,0>, prof:1
I (149036) wifi:station: 88:40:3b:40:c1:13 join, AID=1, bgn, 40U
I (149246) esp_netif_lwip: DHCP server assigned IP to a station, IP is: 192.168.4.2

c. Provisioning

Tap “Provision Network” to enter the provisioning screen shown in Figure 7.37.

d. Completion

Tap “Provision” to enter the completion screen shown in Figure 7.38.

Figure 7.37. Provisioning Figure 7.38. Completion

The output log is as follows:
I (139471) app: Received Wi-Fi credentials

SSID : myssid
Password : mypassword
.
.
.

I (144091) app: Connected with IP Address:192.168.50.31
I (144091) esp_netif_handlers: sta ip: 192.168.50.31, mask: 255.255.255.0, gw: 192.168.50.1
I (144091) wifi_prov_mgr: STA Got IP
I (144101) app: provisioningsuccessful
I (144101) app: Hello World!
I (145101) app: Hello World!

.

.

Chapter 7. Wi-Fi Configuration and Connection 141

.
I (146091) wifi_prov_mgr: Provisioning stopped
I (146101) app: Hello World!
I (147101) app: Hello World!
I (148101) app: Hello World!

2. SmartConfig

The SmartConfig component provided by ESP32-C3 can transmit the SSID and password of
the AP through promiscuous mode, and then use them to connect to the AP.

(1) APIs

The APIs for SmartConfig are defined in esp-idf/components/esp wifi/include/

esp smartconfig.h, as shown in Table 7.5.

Table 7.5. APIs for SmartConfig

API Description

esp_smartconfig_get_version() Get the version of the current SmartConfig

esp_smartconfig_start() Start SmartConfig

esp_smartconfig_stop() Stop SmartConfig

esp_esptouch_set_timeout() Set the timeout of SmartConfig process

esp_smartconfig_set_type() Set the protocol type of SmartConfig

esp_smartconfig_fast_mode() Set the mode of SmartConfig

esp_smartconfig_get_rvd_data() Get the reserved data of ESPTouch v2

(2) Program structure

• Wi-Fi event handling

This module takes care of Wi-Fi connection, disconnection, reconnection, scanning, etc., as
detailed in the sections before. Additionally, when the WIFI_EVENT_STA_START event
occurs, it will also create a SmartConfig task.

• NETIF event handling

This module helps acquire the IP address. Details are provided in the sections before. When
the IP_EVENT_STA_GOT_IP event occurs, the connection flag will be set.

• SmartConfig event handling

The received request determines how the event is handled and processed. SmartConfig
events are shown in Table 7.6.

142 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf/blob/master/components/esp_wifi/include/esp_smartconfig.h
https://github.com/espressif/esp-idf/blob/master/components/esp_wifi/include/esp_smartconfig.h

Table 7.6. SmartConfig events

Event Description

SC_EVENT_SCAN_DONE Scan to obtain the information about nearby APs

SC_EVENT_FOUND_CHANNEL Get the channel of the target AP

SC_EVENT_GOT_SSID_PSWD Enter STA mode to get the SSID and password of the target AP

SC_EVENT_SEND_ACK_DONE Set the SmartConfig completion flag

• SmartConfig tasks

The code for SmartConfig tasks is as follows.
1. static void smartconfig_example_task (void *param)

2. {

3. EventBits_t uxBits;

4. ESP_ERROR_CHECK(esp_smartconfig_set_type(SC_TYPE_ESPTOUCH));

5. smartconfig_start_config_t cfg = SMARTCONFIG_START_CONFIG_DEFAULT();

6. ESP_ERROR_CHECK(esp_smartconfig_start(&cfg));

7. while (1) {

8. uxBits = xEventGroupWaitBits (s_wifi_event_group,

9. CONNECTED_BIT | ESPTOUCH_DONE_BIT,

10. true,

11. false,

12. portMAX_DELAY);

13. if (uxBits & CONNECTED_BIT) {

14. ESP_LOGI (TAG, "WiFi Connected to ap");

15. }

16. if (uxBits & ESPTOUCH_DONE_BIT) {

17. ESP_LOGI (TAG, "smartconfig over");

18. esp_smartconfig_stop();

19. vTaskDelete (NULL);

20. }

21. }

22. }

As demonstrated in the code above, a SmartConfig task primarily performs three functions.
First, it sets the SmartConfig type, such as ESP-TOUCH and ESP-TOUCH V2. Second, after
the configuration, it enables SmartConfig by calling esp_smartconfig_start(). Finally,
it checks the event group in a loop. Upon receiving the SC_EVENT_SEND_ACK_DONE event,
it stops SmartConfig by calling esp_smartconfig_stop().

• Main program

It creates an event group to set the flag when a relevant event is triggered, and then ini-
tialises Wi-Fi.

Chapter 7. Wi-Fi Configuration and Connection 143

(3) Functional verification

To get started, install Espressif Esptouch on your phone. Then turn on the Wi-Fi and power
on the device. You will see the output log by the serial port as follows:
I (1084) wifi:mode : sta (30:ae:a4:80:65:7c)

I (1084) wifi:enable tsf

I (1134) smartconfig: SC version: V3.0.1

I (5234) wifi:ic_enable_sniffer

I (5234) smartconfig: Start to find channel...

I (5234) smartconfig_example: Scan done

NOTE

You may download the APP at https://www.espressif.com/en/support/download/apps.

Connect your phone to Wi-Fi, and enter the password to start configuration. The SmartCon-
fig interface is shown in Figure 7.39.

Figure 7.39. SmartConfig configuration

The output log is as follows:
I (234592) smartconfig: TYPE: ESPTOUCH

I (234592) smartconfig: T|PHONE MAC:68:3e:34:88:59:bf

I (234592) smartconfig: T|AP MAC:a4:56:02:47:30:07

I (234592) sc: SC_STATUS_GETTING_SSID_PSWD

I (239922) smartconfig: T|pswd: 123456789

I (239922) smartconfig: T|ssid: IOT_DEMO_TEST

I (239922) smartconfig: T|bssid: a4:56:02:47:30:07

I (239922) wifi: ic_disable_sniffer

144 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://www.espressif.com/en/support/download/apps

I (239922) sc: SC_STATUS_LINK

I (239932) sc: SSID:IOT_DEMO_TEST

I (239932) sc: PASSWORD:123456789

I (240062) wifi: n:1 0, o:1 0, ap:255 255, sta:1 0, prof:1

I (241042) wifi: state: init -> auth (b0)

I (241042) wifi: state: auth -> assoc (0)

I (241052) wifi: state: assoc -> run (10)

I (241102) wifi: connected with IOT_DEMO_TEST, channel 1

I (244892) event: ip: 192.168.0.152, mask: 255.255.255.0, gw: 192.168.0.1

I (244892) sc: WiFi Connected to ap

I (247952) sc: SC_STATUS_LINK_OVER

I (247952) sc: Phone ip: 192.168.0.31

I (247952) sc: smartconfig over

3. Bluetooth

The BluFi components of ESP32-C3 help transmit the SSID and password through Bluetooth
LE, which can be used to connect to the AP.

(1) APIs

The APIs for BluFi components are defined in esp blufi api.h, as shown in Table 7.7.

Table 7.7. APIs for BluFi components

API Description

esp_blufi_register_callbacks() Register BluFi callback events

esp_blufi_profile_init() Initialise BluFi profile

esp_blufi_profile_deinit() Deinitialise BluFi profile

esp_blufi_send_wifi_conn_report() Send Wi-Fi connection reports

esp_blufi_send_wifi_list() Send the Wi-Fi list

esp_blufi_get_version() Get the version of the current BluFi profile

esp_blufi_close() Disconnect the device

esp_blufi_send_error_info() Send BluFi error messages

esp_blufi_send_custom_data() Send custom data

(2) Program structure

• Wi-Fi event handling: taking care of Wi-Fi connection, disconnection, reconnection,
scanning, etc., as detailed in the sections before.

• NETIF event handling: acquiring IP address. Details are provided in the sections before.

• BluFi event handling: determined by the received request. BluFi events are shown in
Table 7.8.

Chapter 7. Wi-Fi Configuration and Connection 145

https://github.com/espressif/esp-idf/blob/master/components/bt/common/api/include/api/esp_blufi_api.h

Table 7.8. BluFi events

Event Description

ESP_BLUFI_EVENT_INIT_FINISH
Initialise BluFi features, name the device, and send specified
broadcast data

ESP_BLUFI_EVENT_DEINIT_FINISH Handle deinit configuration events

ESP_BLUFI_EVENT_BLE_CONNECT Connect to Bluetooth LE and put the device into safe mode

ESP_BLUFI_EVENT_BLE_DISCONNECT Set Bluetooth LE to disconnect and reconnect

ESP_BLUFI_EVENT_SET_WIFI_OPMODE Put ESP32-C3 into operating mode

ESP_BLUFI_EVENT_REQ_CONNECT_TO_AP
Disconnect from the original Wi-Fi and connect to the speci-
fied Wi-Fi

ESP_BLUFI_EVENT_REQ_DISCONNECT_FROM_AP Disconnect from the AP currently connected to ESP32-C3

ESP_BLUFI_EVENT_REPORT_ERROR Send error messages

ESP_BLUFI_EVENT_GET_WIFI_STATUS
Get Wi-Fi status, including the current Wi-Fi mode and
whether it is connected

ESP_BLUFI_EVENT_RECV_SLAVE_DISCONNECT_BLE Notify BluFi that the GATT connection is closed

ESP_BLUFI_EVENT_RECV_STA_BSSID Enter STA mode and get the BSSID of the target AP

ESP_BLUFI_EVENT_RECV_STA_SSID Enter STA mode and get the SSID of the target AP

ESP_BLUFI_EVENT_RECV_STA_PASSWD Enter STA mode and get the password of the target AP

ESP_BLUFI_EVENT_RECV_SOFTAP_SSID Enter SoftAP mode and get the custom AP SSID

ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD Enter SoftAP mode and get the custom AP password

ESP_BLUFI_EVENT_RECV_SOFTAP_MAX_CONN_NUM
Set the maximum number of connected devices in SoftAP
mode

ESP_BLUFI_EVENT_RECV_SOFTAP_AUTH_MODE Enter authentication mode in SoftAP mode

ESP_BLUFI_EVENT_RECV_SOFTAP_CHANNEL Set the channel in SoftAP mode

ESP_BLUFI_EVENT_GET_WIFI_LIST
Obtain the SSID list, channel, and STA MAC address scanned
over the air

ESP_BLUFI_EVENT_RECV_CUSTOM_DATA Print the received data and trim it to fit the application

• Main program: initialising Wi-Fi, initialising and enabling Bluetooth controller, initial-
ising and enabling Bluetooth protocol, obtaining Bluetooth address and BluFi version,
processing Bluetooth GAP events, and creating BluFi events.

(3) Functional verification

To get started, install EspBlufi on your phone. Turn on the Wi-Fi and power on the device.

146 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

You will see the output log by the serial port as follows:
I (516) phy_init: phy_version 500,985899c,Apr 19 2021,16:05:08
I (696) wifi:set rx active PTI: 0, rx ack PTI: 12, and default PTI: 1
I (908) wifi:mode : sta (30:ae:a4:80:41:55)
I (908) wifi:enable tsf
W (706) BTDM_INIT: esp_bt_controller_mem_release not implemented, return OK
I (706) BTDM_INIT: BT controller compile version [9c99115]
I (716) coexist: coexist rom version 9387209
I (726) BTDM_INIT: Bluetooth MAC: 30:ae:a4:80:41:56
I (746) BLUFI_EXAMPLE: BD ADDR: 30:ae:a4:80:41:56
I (1198) BLUFI_EXAMPLE: BLUFI VERSION 0102
I (1198) BLUFI_EXAMPLE: BLUFI init finish

NOTE

You may download the APP at https://www.espressif.com/en/support/download/apps.

a. Startup

Open the application on your phone and pull down to refresh. You will see the information
about nearby Bluetooth devices on the screen as shown in Figure 7.40.

b. Connection

Select the ESP32-C3 module BLUFI DEVICE to get details about the device. Tap “Connect”
to connect with Bluetooth. If connected, you will see the interface as Figure 7.41.

Figure 7.40. EspBlufi startup Figure 7.41. Bluetooth connected

The output log is as follows:

I (32736) BLUFI_EXAMPLE: BLUFI ble connect

Chapter 7. Wi-Fi Configuration and Connection 147

https://www.espressif.com/en/support/download/apps

c. Provisioning

Tap “Provision network” in Figure 7.41 to enter the provisioning interface shown in Figure
7.42.

d. STA connection

Tap “OK” in Figure 7.42 to configure the network. If the configuration succeeds, you will see
the STA connected interface shown in Figure 7.43. Details about STA connection in Wi-Fi
mode will be displayed at the bottom of the screen, including the BSSID and SSID of the AP
and the connection status.

Figure 7.42. Provisioning Figure 7.43. STA connected

The output log is as follows:
I (63756) BLUFI_EXAMPLE: BLUFI Set WIFI opmode 1
I (63826) BLUFI_EXAMPLE: Recv STA SSID NETGEAR
I (63866) BLUFI_EXAMPLE: Recv STA PASSWORD 12345678
I (63936) BLUFI_EXAMPLE: BLUFI requset wifi connect to AP
I (65746) wifi:new: <8,2>, old: <1,0>, ap: <255,255>, sta: <8,2>, prof:1
I (66326) wifi:state: init -> auth (b0)
I (67326) wifi:state: auth -> init (200)
I (67326) wifi:new: <8,0>, old: <8,2>, ap: <255,255>, sta: <8,2>, prof:1
I (69516) wifi:new: <10,0>, old: <8,0>, ap: <255,255>, sta: <10,0>, prof:1
I (69516) wifi:state: init -> auth (b0)

148 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

I (69566) wifi:state: auth -> assoc (0)
I (69626) wifi:state: assoc -> run (10)
I (69816) wifi:connected with NETGEAR, aid = 1, channel 10, BW20, bssid = 5c:02:
14:03:a5:7d
I (69816) wifi:security: WPA2-PSK, phy: bgn, rssi: -48
I (69826) wifi:pm start, type: 1
I (69826) wifi:set rx beacon pti, rx_bcn_pti: 14, bcn_timeout: 14, mt_pti: 25000,
mt_time: 10000
I (69926) wifi:BcnInt:102400, DTIM:1 W (70566) wifi:idx:0 (ifx:0, 5c:02:14:03:a5:
7d), tid:0, ssn:2, winSize:64
I (71406) esp_netif_handlers: sta ip: 192.168.31.145, mask: 255.255.255.0, gw:
192.168.31.1

7.5 Practice: Wi-Fi Configuration in Smart Light Project
In this section, we will start by programming for Wi-Fi connection based on the LED dimming
driver project, and then give an example of smart Wi-Fi configuration with the Smart Light
project.

7.5.1 Wi-Fi Connection in Smart Light Project

After learning the basics of Wi-Fi connection, we may put it into practice based on ESP32-C3,
and encapsulate the Wi-Fi features according to application requirements, so as to provide
APIs for Wi-Fi initialisation and Wi-Fi connection initialisation.

1. Driver initialisation

This API specifies parameters for ESP32-C3, such as GPIO pins, fading time, breathing cycle,
PWM frequency, clock source of the PWM controller, and PWM duty cycle resolution. For
details, please refer to Chapter 5.

1. app_driver_init();

2. NVS initialisation

Before initialising Wi-Fi, it is necessary to initialise the NVS library as the Wi-Fi component
needs to acquire and store certain parameters. The API is as follows:

1. nvs_flash_init();

3. Wi-Fi initialisation

This API handles LwIP and Wi-Fi events, and initialises Wi-Fi drivers.

1. wifi_initialize();

4. Wi-Fi connection initialisation

This API implements Wi-Fi configuration, starts the Wi-Fi driver, and waits for Wi-Fi connec-
tion to complete.

1. wifi_station_initialize();

Chapter 7. Wi-Fi Configuration and Connection 149

Source code

To code for Wi-Fi connection based on the LED dimming driver project, refer to
book-esp32c3-iot-projects/device firmware/3 wifi connection.

You may compile and run the code on the development board. The output is as follows:
I (397) wifi station: Application driver initialization
I (397) gpio: GPIO[9]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 1| Pulldown:
0| Intr:0
I (427) wifi station: NVS Flash initialization
I (427) wifi station: Wi-Fi initialization
I (547) wifi station: Wi-Fi Station initialization
I (727) wifi station: wifi_station_initialize finished.
I (6427) wifi station: connected to ap SSID:espressif password:espressif
[00] Hello world!

7.5.2 Smart Wi-Fi Configuration

Now, we will turn to Wi-Fi configuration based on ESP32-C3. Similar to Wi-Fi connection,
we will encapsulate the smart Wi-Fi configuration features according to application require-
ments, in order to provide APIs for initialising smart Wi-Fi configuration.

After initialising the provisioning, the program will check its status. If the device has been
provisioned, the program will complete Wi-Fi connection using the router information; oth-
erwise, it will output a QR code for you to start provisioning.

1. wifi_prov_mgr_initialize();

To integrate the code for Bluetooth network configuration into the project in section 7.5.1,
please refer to book-esp32c3-iot-projects/device firmware/4 network config.
With the ESP BLE Provisioning App, you may compile and run the code on the development
board. The output is as follows.

NOTE

You may download the APP at https://www.espressif.com/en/support/download/apps.

If the device has not been provisioned, you will see the log shown in Figure 7.44.

If the device has been provisioned, you will see the following log:
I (399) wifi station: Application driver initialization
I (399) gpio: GPIO[9]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 1| Pulldown:
0| Intr:0
I (429) wifi station: NVS Flash initialization
I (429) wifi station: Wi-Fi initialization
I (549) wifi station: Wi-Fi Provisioning initialization
I (549) wifi station: Already provisioned, starting Wi-Fi STA
I (809) wifi station: wifi_station_initialize finished.
I (1939) wifi station: got ip:192.168.3.105

150 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/3_wifi_connection
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/4_network_config
https://www.espressif.com/en/support/download/apps

Figure 7.44. Log output if device not provisioned

7.6 Summary
In this chapter, we first introduced two important technologies for network configuration
of IoT devices, Wi-Fi and Bluetooth. Then we covered some concepts and mechanisms
of Wi-Fi network configuration, including SoftAP, SmartConfig, Bluetooth, direct network
configuration, RouterConfig, ZeroConfig, and phone AP network configuration. We also
analysed the code for SoftAP, SmartConfig, and Bluetooth network configuration, combined
with Wi-Fi programming. Finally, we tried out smart Wi-Fi configuration with the Smart
Light project.

Chapter 7. Wi-Fi Configuration and Connection 151

Chapter
8

Local Control

In Chapter 7, we learnt about basics of Wi-Fi and Bluetooth, as well as several common
network configuration methods. Through the introduction and practice in Chapter 7, you
should be able to configure devices and connect them to Wi-Fi routers. On this basis, this
chapter will introduce how to implement local control of devices based on Wi-Fi and Blue-
tooth, and realize local control with ESP32-C3. It is intended to explain the definition and
process of local control, along with some common local control communication protocols,
and help you to build your own local control framework for smart lights based on ESP32-C3.

8.1 Introduction to Local Control
This section first introduces what local control is and its usage conditions, scenarios, and
advantages. Then it will expound on the device discovery function and data communication
protocols involved in local control, and how to choose the data transmission medium for
local control. After reading this section, you will have a full understanding of local control
of devices.

As the name suggests, local control refers to operating controlled devices within a certain
distance through a series of methods such as hardware switches, touch buttons, infrared
remote control, smartphones, and computer networks. It is ubiquitous in our daily life,
such as setting air conditioners through infrared remote controls, controlling voice-activated
equipment through voice commands, and turning on household lighting through switches
or smartphone apps. The concept and technology of local control have become deeply
integrated into every aspect of our daily lives.

You may have noticed that some of the examples listed above are performed through hard-
ware circuit switches or wireless communication technologies such as infrared remote con-
trol, while others involve voice recognition, and data communication technologies such as
the Internet of Things. In this book, we will focuse on the data communication technology
of IoT, and help you build your own local control framework to control the ESP32-C3 smart
lights.

Within the Internet of Things, each device needs to transmit commands through certain data
communication method. Some common ways are as follows:

152

• Using Wi-Fi or Ethernet. Generally, devices based on Wi-Fi and Ethernet natively run
the TCP/IP protocol stack, which greatly reduces the workload of protocol adaptation
and development. When performing local communication, they also need a gateway or
Wi-Fi router.

• Using short-range wireless communication technologies such as Bluetooth and Zig-
Bee, which is suitable for data transmission between low-speed and low-power devices.

According to the functional characteristics of ESP32-C3, we will introduce two commonly
used local control technologies in this chapter, namely through Wi-Fi or Bluetooth within a
LAN.

The network topology centered on Wi-Fi is shown in Figure 8.1. The command sending
devices (smartphone or PC) should be in the same LAN as the controlled device, and send
data to the device through Wi-Fi. But for Bluetooth control, there is no need of Wi-Fi routers,
as data can be directly transmitted between the smartphone and the controlled device via
Bluetooth.

Figure 8.1. Network topology centered on Wi-Fi within a LAN

Using Bluetooth is simpler than using Wi-Fi as Bluetooth does not require Wi-Fi routers.
However, in practice, if the IoT device wants to access cloud platforms, it needs Wi-Fi routers
to connect to the Internet and then the cloud platform. Moreover, smartphones are mostly
connected to Wi-Fi routers. Therefore, an LAN usually includes Wi-Fi routers, which makes
it convenient to use Wi-Fi for local control. If the IoT device does not need access to cloud
platforms, Bluetooth can be a good option for local control. You can select one of the
methods according to whether your device needs access to cloud platforms.

• If yes, it is recommended to choose Wi-Fi, as it supports multiple smartphones control-
ling one device at the same time, and its transmission bandwidth is larger than that
of Bluetooth. You can use Bluetooth only for network configuration, and then stop its
protocol stack to save ESP32-C3’s resources.

Chapter 8. Local Control 153

• If no, you can use Bluetooth instead of Wi-Fi to exchange data between the smartphone
and controlled device.

8.1.1 Application of Local Control

Most IoT devices are connected to cloud platforms which forward commands from smart-
phones to implement remote control. Such control depends on the Internet provided by
Wi-Fi routers to maintain the link between the controlled device and cloud platforms. But
once the Wi-Fi routers disconnect from the Internet, remote control will be paralyzed. At
this point, local control will be a good supplement for sending commands, thus preventing
the IoT devices from a full-out breakdown due to network exceptions.

As shown in Figure 8.1, a local control framework based on Wi-Fi in a LAN consists of a
Wi-Fi router, a controlling device, and a controlled device. The controlling device can be a
smartphone or a computer that can run TCP/IP protocol stack. It should be connected to
the same Wi-Fi router as the controlled device, to ensure that they are in the same LAN for
data communication.

As for local control based on Bluetooth, Wi-Fi routers are not needed. Smartphones can
directly connect to the controlled device through Bluetooth and realize point-to-point data
transmission.

8.1.2 Advantages of Local Control

Local control only requires data to be transmitted within the LAN instead of through the
Internet. Therefore, it functions with shorter delay and faster response. Moreover, as the
data only interacts within the LAN composed of the controlled device, a Wi-Fi router and
the controlling devices, there is lower probability of data being stolen or modified, hence
enhancing data privacy and security. In addition, local control saves Internet bandwidth. It
is not vulnerable to Internet disconnection. As long as the two parties are in the same LAN
or linked through Bluetooth, the control can be maintained. For some products without
access to cloud platforms, local control is the only means for smartphones to take charge of
them.

Considering these advantages, local control is increasingly favored by IoT companies. More
and more SDKs and products support local control functions. For example, the ESP Rain-
Maker, a complete IoT platform developed by Espressif, includes a smartphone app to im-
plement local control.

8.1.3 Discovering Controlled Devices through Smartphones

For local control based on Wi-Fi wireless transmission media, data runs on the TCP/IP pro-
tocol stack. The following two issues should be solved since the smartphone is not directly

154 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

connected to the controlled device. How does the smartphone find the controlled device,
and how does the smartphone communicate with the controlled device?

How does the smartphone find the controlled device, that is, how does the smartphone
know the IP address of the controlled device? Since all data is transmitted based on the IP
layer, obtaining the IP address of the controlled device is a prerequisite for subsequent data
communication. You may consider: “I can log in to the Wi-Fi router interface and check the
IP address of the controlled device directly on the Wi-Fi router interface, right?” Yes, you
can certainly obtain the IP address of the controlled device in this way. However, manually
querying IP addresses completely goes against the original intention of IoT technology to
bring convenience. Thus, a technology is required to automatically discover the controlled
device. This part will be discussed in detail in section 8.2.

For the local control frameworks based on Bluetooth control, you can learn from the Blue-
tooth scanning introduced in Chapter 7 that the Bluetooth of the controlled device will
broadcast its own Bluetooth information, and the smartphone only needs to scan the Blue-
tooth of the controlled device. Discovering the controlled device through Bluetooth is much
simpler than Wi-Fi. After the smartphone connects to the Bluetooth of the controlled device,
it can send data to the device. In addition, Bluetooth transmission does not depend on the
TPC/IP protocol stack, as it has its own transmission protocol. This part will be introduced
in detail in section 8.3.

8.1.4 Data Communication Between Smartphones and Devices

How does smartphones communicate with controlled devices?

When using Wi-Fi wireless transmission media, a smartphone can communicate with the
controlled device through TCP/IP protocol or UDP protocol after obtaining the IP address of
the controlled device. Generally speaking, as the receiver, the controlled device receives con-
trol commands sent by the smartphone in local control; and the smartphone,as the sender,
sends control commands to the controlled device. Therefore, the controlled device plays the
role of a server; and the smartphone plays the role of a client, allowing multiple clients to
send control commands to the server. This part will be introduced in detail in section 8.3.

8.2 Common Local Discovery Methods
In section 8.1.4, we mentioned how to discover controlled devices in the LAN using Wi-Fi
wireless transmission media. In the TCP/IP protocol stack, discovering the controlled device
means obtaining the IP address of the controlled device.

In a LAN, how to obtain the peer’s IP address is a problem worth studying. A common pro-
tocol for obtaining the peer’s IP address is the Reverse Address Resolution Protocol (RARP).
This protocol sends query packets with knowing the peer’s MAC address, and the gateway

Chapter 8. Local Control 155

server parses its own ARP table to obtain the IP address of the queried MAC device. If you
are familiar with LAN, you may immediately associate with the Address Resolution Protocol
(ARP), which is a protocol that sends query packets with knowing the peer’s IP address. The
peer device or gateway device replies with the MAC address corresponding to the IP address
after querying its own ARP table. ARP and RARP are a pair of protocols that mutually re-
solve network layer addresses and data link layer addresses. However, these two protocols
both need to know the peer’s network layer address or data link layer address. This feature
brings difficulty to IoT applications as the network layer address and data link layer address
of a device in the LAN are difficult to be obtained. Thus, this subsection will introduce the
local discovery technology that is truly suitable for IoT.

Local discovery is to discover information about nodes in the LAN, including address infor-
mation for communication with nodes, application service information supported by nodes,
and customised information. For example, mDNS (Multicast DNS, which will be introduced
in subsection 8.2.4) is a commonly-used local discovery protocol. The principle of local dis-
covery is to send a message, and the peer will inform the sender of its device information
after receiving the message. Now the problem that needs to be solved is how to ensure that
the peer can receive the message sent by the sender.

In fact, if you understand the classification of IP addresses, you will know that in addition
to the more commonly-used point-to-point communication (unicast), there are also one-to-
many (multicast) and one-to-all (broadcast) communications. IP addresses can be divided
into unicast addresses, multicast addresses, and broadcast addresses. Unicast needs to know
the peer’s IP address, so it is not suitable for local discovery. Multicast and broadcast do not
need to know the peer’s IP address. They send messages to specific addresses, and the peer
can receive the messages as long as it monitors this address. Thus, multicast and broadcast
are suitable for discovering devices in the LAN, and the peer can receive the message sent
by the sender with these two technologies.

8.2.1 Broadcast

Broadcast refers to sending messages to all possible receivers in the network. There are two
major applications of broadcast:

• Locating a host in the local network.
• Reducing the packet flow in the local network, so that one message can notify all hosts

in the local network.

Common broadcast application messages include:

Address Resolution Protocol (ARP)
It can be used to broadcast an ARP request in the local network: “Please tell me what the
MAC address of the device with IP address a.b.c.d is”. ARP broadcast is MAC broadcast on

156 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

layer 2 (link layer), not the IP broadcast on layer 3 (network layer).

Dynamic Host Configuration Protocol (DHCP)
If there is a DHCP server on the local network, the DHCP client sends a DHCP request for
the destination IP address (usually 255.255.255.255), and the DHCP server on the same
network can receive the request and reply with an assigned IP address.

Broadcast mainly uses the UDP protocol (see subsection 8.3.3 for details) instead of the TCP
protocol (see subsection 8.3.1 for details) as it is more suitable for unicast.

1. Broadcast addresses

Broadcast addresses include MAC broadcast addresses on layer 2 (link layer) (FF:FF:FF:FF:
FF:FF) and IP broadcast addresses on layer 3 (network layer) (255.255.255.255), here-
inafter referred to as layer 2 addresses and layer 3 addresses. This section mainly introduces
layer 3 addresses. Generally, when the layer 3 address of a message is all 255, the layer 2
address is usually all FF. This is because a message with a layer 3 address full of 255 means
that all devices in the local network will receive this message. If the layer 2 address of the
message is not all FF, the message will be discarded during the layer 2 address processing
of the receiving device. For the receiving device, if the layer 2 address of the message is
not a broadcast address, nor the local MAC address and multicast MAC address (such as
01:00:5E:XX:XX:XX), it will be discarded and not processed. Therefore, generally, if the
layer 3 address is a broadcast address, so is the layer 2 address.

IPv4 addresses consist of a subnet ID and a host ID. For example, for a device with an
IP address of 192.168.3.4 and a subnet mask of 255.255.255.0, its subnet ID and host
ID are calculated from the IP address and subnet mask. In this example, the subnet ID is
192.168.3.0 and the host ID is 4. When the subnet ID and host ID are all 255, it is a broadcast
address; it is also a broadcast address when only the host ID is all 255. For example, if you
have a subnet of 192.168.1/24, then 192.168.1.255 is the broadcast address of this subnet.

You may wonder, what is the difference between a broadcast address with a subnet ID and
host ID of all 255 and a broadcast address with only a host ID of 255?

The broadcast range of the first address is larger than that of a specific subnet. For example,
a Wi-Fi router has two subnets, 192.168.1/24 and 192.168.2/24. If a host with IP ad-
dress of 192.168.1.2 in the subnet 192.168.1/24 sends a message to the destination address
192.168.1.255, the Wi-Fi router will only forward the message to the host in the subnet
192.168.1/24, and will not forward it to the host in the subnet 192.168.2/24. If the host
sends a message to the destination address 255.255.255.255, the Wi-Fi router will forward
the message to hosts in both subnets. Therefore, the broadcast address with a host ID of
255 is also called a subnet-directed broadcast address. By using a subnet-directed broadcast

Chapter 8. Local Control 157

address, you can send messages to a specified subnet, so that these messages will not be
sent to the subnets that do not need them in the LAN, thus saving network resources.

2. Implementing a broadcast sender using socket

Source code

For the source code of the function esp send broadcast(), please refer to book-esp
32c3-iot-projects/test case/broadcast discovery.

The function esp_send_broadcast() sends UDP broadcast packets with the data “Are
you Espressif IOT Smart Light” to the LAN, and then waits for the peer to reply. This function
uses the standard interface of Berkeley sockets, also known as BSD socket. Berkeley socket
is a common network interface in UNIX systems, which not only supports different network
types, but also is a communication mechanism between internal processes. The TCP/UDP
network programming covered in this book applies Berkeley sockets. If you are interested,
you can read the UNIX Network Programming (Volume 1): Socket Networking API published
by Posts & Telecommunications Press to learn more about Berkeley socket programming. In
this book, we will only briefly introduces how to use socket programming.

In this section, we will introduce how to use socket(AF_INET, SOCK_DGRAM, 0) to
create a UDP socket, and then use setsockopt() to enable socket support for broadcast-
ing. Then we will set the destination address for broadcasting to all 255 and the port to
3333, and call sendto()to send the message. You can determine whether the data is sent
successfully according to the return value of the sendto() function. The code is as below:
1. esp_err_t esp_send_broadcast(void)

2. {

3. int opt_val = 1;

4. esp_err_t err = ESP_FAIL;

5. struct sockaddr_in from_addr = {0};

6. socklen_t from_addr_len = sizeof(struct sockaddr_in);

7. char udp_recv_buf[64 + 1] = {0};

8.

9. //Create an IPv4 UDP socket

10. int sockfd = socket(AF_INET, SOCK_DGRAM, 0);

11. if (sockfd == -1) {

12. ESP_LOGE(TAG, "Create UDP socket fail");

13. return err;

14. }

15.

16. //Set SO_BROADCAST socket option, and use it to send broadcast

17. int ret = setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &opt_val,

18. sizeof(int));

19. if (ret < 0) {

158 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/broadcast_discovery
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/broadcast_discovery

20. ESP_LOGE(TAG, "Set SO_BROADCAST option fail");

21. goto exit;

22. }

23.

24. //Set broadcast destination address and port

25. struct sockaddr_in dest_addr = {

26. .sin_family = AF_INET,

27. .sin_port = htons(3333),

28. .sin_addr.s_addr = htonl(INADDR_BROADCAST),

29. };

30.

31. char *broadcast_msg_buf = "Are you Espressif IOT Smart Light";

32.

33. //Call sendto() to send broadcast data

34. ret = sendto(sockfd, broadcast_msg_buf, strlen(broadcast_msg_buf), 0,

35. (struct sockaddr *)&dest_addr,

36. sizeof(struct sockaddr));

37. if (ret < 0) {

38. ESP_LOGE(TAG, "Error occurred during sending: errno %d", errno);

39. } else {

40. ESP_LOGI(TAG, "Message sent successfully");

41. ret = recvfrom(sockfd, udp_recv_buf, sizeof(udp_recv_buf) - 1, 0,

42. (struct sockaddr *)&from_addr,

43. (socklen_t *)&from_addr_len);

44. if (ret > 0) {

45. ESP_LOGI(TAG, "Receive udp unicast from %s:%d, data is %s",

46. inet_ntoa (((struct sockaddr_in *)&from_addr)->sin_addr),

47. ntohs(((struct sockaddr_in *)& from_addr)->sin_port),

48. udp_recv_buf);

49. err = ESP_OK;

50. }

51. }

52. exit:

53. close(sockfd);

54. return err;

55. }

3. Implementing a broadcast receiver using socket

Source code

For the source code of the function esp receive broadcast(), please refer to book-
esp32c3-iot-projects/test case/broadcast discovery.

The function esp_receive_broadcast() implements reception of broadcast packets
and unicast replies. The implementation logic of a receiver is same as that of the sender.

Chapter 8. Local Control 159

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/broadcast_discovery
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/broadcast_discovery

First create a UDP socket, and set the source address and port number of the message to be
listened. Generally, it is used as a server. The source address of the message is set to 0.0.0.0,
which means that the source address of the message is not verified. Call bind() to bind
the socket, and then use recvfrom() to receive the message. When a broadcast packet
carrying the data “Are you Espressif IOT Smart Light” is received, the IP address and port
number of the peer are saved in from_addr, which will be sent to the peer in the form of
unicast. The code is as below:
1. esp_err_t esp_receive_broadcast(void)

2. {

3. esp_err_t err = ESP_FAIL;

4. struct sockaddr_in from_addr = {0};

5. socklen_t from_addr_len = sizeof(struct sockaddr_in);

6. char udp_server_buf[64+1] = {0};

7. char *udp_server_send_buf = "ESP32-C3 Smart Light https 443";

8.

9. //Create an IPv4 UDP socket

10. int sockfd = socket(AF_INET, SOCK_DGRAM, 0);

11. if (sockfd == -1) {

12. ESP_LOGE(TAG, "Create UDP socket fail");

13. return err;

14. }

15.

16. //Set broadcast destination address and port

17. struct sockaddr_in server_addr = {

18. .sin_family = AF_INET,

19. .sin_port = htons(3333),

20. .sin_addr.s_addr = htonl(INADDR_ANY),

21. };

22.

23. int ret = bind(sockfd, (struct sockaddr *)&server_addr,

24. sizeof(server_addr));

25. if (ret < 0) {

26. ESP_LOGE(TAG, "Bind socket fail");

27. goto exit;

28. }

29.

30. //Call recvfrom()to receive broadcast data

31. while (1) {

32. ret = recvfrom(sockfd, udp_server_buf, sizeof(udp_server_buf) - 1, 0,

33. (struct sockaddr *)&from_addr,

34. (socklen_t *)&from_addr_len);

35. if (ret > 0) {

36. ESP_LOGI(TAG, "Receive udp broadcast from %s:%d, data is %s",

37. inet_ntoa (((struct sockaddr_in *)&from_addr)->sin_addr),

38. ntohs(((struct sockaddr_in *)& from_addr)->sin_port),

160 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

39. udp_server_buf);

40. //Upon reception of broadcast request, send data communication port of peer through unicast

41. if (!strcmp(udp_server_buf, "Are you Espressif IOT Smart Light")){

42. ret = sendto(sockfd, udp_server_send_buf, strlen(udp_server_send_buf),

43. 0, (struct sockaddr *)&from_addr, from_addr_len);

44. if (ret < 0) {

45. ESP_LOGE(TAG, "Error occurred during sending: errno %d", errno);

46. } else {

47. ESP_LOGI(TAG, "Message sent successfully");

48. }

49. }

50. }

51. }

52. exit:

53. close(sockfd);

54. return err;

55. }

4. Running result

Add the sender and receiver code to the Wi-Fi Station example to ensure they are connected
to the same Wi-Fi router. The log of broadcast sending is as follows:
I (774) wifi:mode : sta (c4:4f:33:24:65:f1)

I (774) wifi: enable tsf

I (774) wifi station: wifi_init_sta finished

I (784) wifi:new: <6,0>, old: <1,0>, ap: <255,255>, sta: <6,0>, prof:1

I (794) wifi:state: auth -> assoc (0)

I (814) wifi:state: assoc -> run (10)

I (834) wifi: connected with myssid, aid = 1, channel 6, BW20, bssid = 34:29:12:

43:c5:40

I (834) wifi:security: WPA2-PSK, phy: bgn, rssi: -23

I (834) wifi: pm start, type: 1

I (884) wifi: AP’s beacon interval = 102400 us, DTIM period = 1

I (1544) esp netif handlers: sta ip: 192.168.3.5, mask: 255.255.255.0, gw: 192.

168.3.1

I (1544) wifi station: got ip:192.168.3.5 I (1544) wifi station: connected to ap

SSID: myssid password: 12345678

I (1554) wifi station: Message sent successfully

I (1624) wifi station: Receive udp unicast from 192.168.3.80:3333, data is ESP32

-C3 Smart Light https 443

The log of broadcast reception is as follows:
I (1450) wifi:new: <6,0>, old: <1,0>, ap: <255,255>, sta: <6,0>, prof:1

I (2200) wifi:state: init -> auth (b0)

I (2370) wifi:state: auth -> assoc (0)

I (2380) wifi:state: assoc -> run (10)

I (2440) wifi: connected with myssid, aid = 2, channel 6, BW20, bssid = 34:29:

Chapter 8. Local Control 161

12:43:c5:40

I (2450) wifi:security: WPA2-PSK, phy: bgn, rssi: -30

I (2460) wifi: pm start, type: 1

I (2530) wifi: AP’s beacon interval = 102400 us, DTIM period = 1

I (3050) esp_netif_handlers: sta ip: 192.168.3.80, mask: 255.255.255.0, gw: 192.

168.3.1

I (3050) wifi station: got ip:192.168.3.80

I (3050) wifi station: connected to ap SSID: myssid password: 12345678

W (17430) wifi: <ba-add>idx:0 (ifx:0, 34:29:12:43:c5:40), tid:5, ssn:0,

winSize:64

I (26490) wifi station: Receive udp broadcast from 192.168.3.5:60520, data is

Are you Espressif IOT Smart Light

I (26500) wifi station: Message sent successfully

I (382550) wifi station: Receive udp broadcast from 192.168.3.5:63439, data is

Are you Espressif IOT Smart Light

I (382550) wifi station: Message sent successfully

The log of broadcast sending indicates that the sender sent a UDP broadcast packet with
data “Are you Espressif IOT Smart Light”. The broadcast receiving log indicates that the
receiver listens to the broadcast packet of the local network and replies with a unicast packet
carrying the data “ESP32-C3 Smart Light https 443” upon receiving a packet carrying “Are
you Espressif IOT Smart Light”. In this way, local devices can be discovered. After receiving
the unicast reply from the receiver, the sender can confirm the IP address of the peer and
know the application protocol and port number for subsequent data communication from
the carried data.

The broadcast protocol of the local network can complete the device discovery function.
However, broadcasting the discovery request to all devices on the local network will cause a
certain burden on the local network and host. Therefore, discovering devices by broadcast-
ing is not a good choice.

8.2.2 Multicast

Multicast refers to sending messages to interested receivers. Compared with the two “ex-
tremes” of unicast and broadcast addressing schemes (either one or all), multicast provides
a compromise solution. As the name implies, multicast mainly emphasises the concept of
groups, that is, a host can send a message to a group address, and all hosts that join this
group can receive the message. This is somewhat like subnet-directed broadcast, but more
flexible than it, because a host can join or leave a certain group at any time, thus reducing
the burden on the local network and hosts.

Internet Group Management Protocol (IGMP) is a protocol responsible for managing IP mul-
ticast members, which is used to establish and maintain multicast group membership rela-
tionship between an IP host and its directly adjacent multicast Wi-Fi routers. For multicast,

162 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Wi-Fi routers need to support the IGMP protocol.

1. Multicast addresses

The destination addresses of multicast messages use a class D IP address. The first byte
starts with binary numbers 1110, and it ranges from 224.0.0.0 to 239.255.255.255. Since
the multicast IP address identifies a group of hosts, the multicast IP address can only be used
as the destination address, not the source address, which is always a unicast address.

A multicast group is a group identified by a specific multicast address. When members inside
or outside the group send a message to this multicast address, group members identified
by the multicast address can receive the message. Multicast groups can be permanent or
temporary. Among multicast addresses, multicast addresses officially assigned are called
permanent multicast groups, while those that are neither reserved nor permanent are called
temporary multicast groups. The numbers of hosts in permanent and temporary multicast
groups are dynamic and may even be zero.

Multicast addresses are classified as follows:

• 224.0.0.0 ⇠ 224.0.0.255: Reserved multicast addresses (permanent multicast groups).
The address 224.0.0.0 is not allocated, and the others are used for routing protocols.

• 224.0.1.0 ⇠ 224.0.1.255: Public multicast addresses, which can be used on the Internet.
• 224.0.2.0 ⇠ 238.255.255.255: Multicast addresses available to users (temporary multi-

cast groups), which are valid throughout the network.
• 239.0.0.0 ⇠ 239.255.255.255: Multicast addresses for local management, which are

valid only within specific local ranges.

2. Implementing a multicast sender using socket

Source code

For the source code of the function esp join multicast group(), please refer to
book-esp32c3-iot-projects/test case/multicast discovery.

The implementation of multicast sending is more complex than that of broadcast sending.
Multicast sending requires setting the sending interface of the multicast packets. If you
need to receive packets from a certain multicast group, you also need to join the multicast
group. The function esp_join_multicast_group() implements the setting of the mul-
ticast group sending interface and the function of joining the multicast group. The function
esp_send_multicast() implements the creation, binding, configuration of destination
address and port of regular UDP sockets, and sending and receiving functions. In addition,
TTL settings are also added to ensure that the multicast group can only be performed in the
LAN of this route. The code is as below:

Chapter 8. Local Control 163

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/multicast_discovery

1. #define MULTICAST_IPV4_ADDR "232.10.11.12"

2. int esp_join_multicast_group(int sockfd)

3. {

4. struct ip_mreq imreq = { 0 };

5. struct in_addr iaddr = { 0 };

6. int err = 0;

7.

8. //Configure sending interface of multicast group

9. esp_netif_ip_info_t ip_info = { 0 };

10. err = esp_netif_get_ip_info(esp_netif_get_handle_from_ifkey("WIFI_STA_DEF"),

11. &ip_info);

12. if (err ! = ESP_OK) {

13. ESP_LOGE(TAG, "Failed to get IP address info. Error 0x%x", err);

14. goto err;

15. }

16. inet_addr_from_ip4addr(&iaddr, &ip_info.ip);

17. err = setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_IF, &iaddr, sizeof(struct in_addr));

18. if (err < 0) {

19. ESP_LOGE(TAG, "Failed to set IP_MULTICAST_IF. Error %d", errno);

20. goto err;

21. }

22.

23. //Configure the address of monitoring multicast group

24. inet_aton(MULTICAST_IPV4_ADDR, &imreq.imr_multiaddr.s_addr);

25.

26. //Configure the socket to join the multicast group

27. err = setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,

28. &imreq, sizeof(struct ip_mreq));

29. if (err < 0) {

30. ESP_LOGE(TAG, "Failed to set IP_ADD_MEMBERSHIP. Error %d", errno);

31. }

32. err:

33. return err;

34. }

35.

36. esp_err_t esp_send_multicast(void)

37. {

38. esp_err_t err = ESP_FAIL;

39. struct sockaddr_in saddr = {0};

40. struct sockaddr_in from_addr = {0};

41. socklen_t from_addr_len = sizeof(struct sockaddr_in);

42. char udp_recv_buf[64 + 1] = {0};

43.

44. //Create an IPv4 UDP socket

45. int sockfd = socket(AF_INET, SOCK_DGRAM, 0);

46. if (sockfd == -1) {

47. ESP_LOGE(TAG, "Create UDP socket fail");

164 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

48. return err;

49. }

50.

51. //Bind socket

52. saddr.sin_family = PF_INET;

53. saddr.sin_port = htons(3333);

54. saddr.sin_addr.s_addr = htonl(INADDR_ANY);

55. int ret = bind(sockfd, (struct sockaddr *)&saddr, sizeof(struct sockaddr_in));

56. if (ret < 0) {

57. ESP_LOGE(TAG, "Failed to bind socket. Error %d", errno);

58. goto exit;

59. }

60.

61. //Set multicast TTL to 1, limiting the multicast packet to one route

62. uint8_t ttl = 1;

63. ret = setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(uint8_t));

64. if (ret < 0) {

65. ESP_LOGE(TAG, "Failed to set IP_MULTICAST_TTL. Error %d", errno);

66. goto exit;

67. }

68.

69. //Join the multicast group

70. ret = esp_join_multicast_group(sockfd);

71. if (ret < 0) {

72. ESP_LOGE(TAG, "Failed to join multicast group");

73. goto exit;

74. }

75.

76. //Set multicast destination address and port

77. struct sockaddr_in dest_addr = {

78. .sin_family = AF_INET,

79. .sin_port = htons(3333),

80. };

81. inet_aton(MULTICAST_IPV4_ADDR, &dest_addr.sin_addr.s_addr);

82. char *multicast_msg_buf = "Are you Espressif IOT Smart Light";

83.

84. //Call sendto() to send multicast data

85. ret = sendto(sockfd, multicast_msg_buf, strlen(multicast_msg_buf), 0,

86. (struct sockaddr *)&dest_addr, sizeof(struct sockaddr));

87. if (ret < 0) {

88. ESP_LOGE(TAG, "Error occurred during sending: errno %d", errno);

89. } else {

90. ESP_LOGI(TAG, "Message sent successfully");

91. ret = recvfrom(sockfd, udp_recv_buf, sizeof(udp_recv_buf) - 1, 0,

92. (struct sockaddr *)&from_addr,

93. (socklen_t *)&from_addr_len);

94. if (ret > 0) {

Chapter 8. Local Control 165

95. ESP_LOGI(TAG, "Receive udp unicast from %s:%d, data is %s",

96. inet_ntoa(((struct sockaddr_in *)&from_addr)->sin_addr),

97. ntohs(((struct sockaddr_in *)&from_addr)->sin_port),

98. udp_recv_buf);

99. err = ESP_OK;

100. }

101. }

102.exit:

103. close(sockfd);

104. return err;

105.}

3. Implementing a multicast receiver using socket

Source code

For the source code of the function esp recv multicast(), please refer to book-esp
32c3-iot-projects/test case/multicast discovery.

Implementing a multicast receiver is similar to implementing a multicast sender, which re-
quires specifying the interface of multicast packets and the multicast group to be joined.
The function esp_recv_multicast() implements the creation, binding, configuration of
destination address and port of regular UDP sockets, and sending and receiving functions.
In addition, since multicast needs to be sent in this example, Time To Live (TTL) is set. The
code is as below:
1. esp_err_t esp_recv_multicast(void)

2. {

3. esp_err_t err = ESP_FAIL;

4. struct sockaddr_in saddr = {0};

5. struct sockaddr_in from_addr = {0};

6. socklen_t from_addr_len = sizeof(struct sockaddr_in);

7. char udp_server_buf[64+1] = {0};

8. char *udp_server_send_buf = "ESP32-C3 Smart Light https 443";

9.

10. //Create an IPv4 UDP socket

11. int sockfd = socket(AF_INET, SOCK_DGRAM, 0);

12. if (sockfd == -1) {

13. ESP_LOGE(TAG, "Create UDP socket fail");

14. return err;

15. }

16.

17. //Bind socket

18. saddr.sin_family = PF_INET;

19. saddr.sin_port = htons(3333);

20. saddr.sin_addr.s_addr = htonl(INADDR_ANY);
21. int ret = bind(sockfd, (struct sockaddr *)&saddr, sizeof(struct sockaddr_in));

166 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/multicast_discovery
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/multicast_discovery

22. if (ret < 0) {

23. ESP_LOGE(TAG, "Failed to bind socket. Error %d", errno);

24. goto exit;

25. }

26.

27. //Set multicast TTL to 1, limiting the multicast packet to one route

28. uint8_t ttl = 1;

29. ret = setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(uint8_t));

30. if (ret < 0) {

31. ESP_LOGE(TAG, "Failed to set IP_MULTICAST_TTL. Error %d", errno);

32. goto exit;

33. }

34.

35. //Join the multicast group

36. ret = esp_join_multicast_group(sockfd);

37. if (ret < 0) {

38. ESP_LOGE(TAG, "Failed to join multicast group");

39. goto exit;

40. }

41.

42. //Call recvfrom() to receive multicast data

43. while (1) {

44. ret = recvfrom(sockfd, udp_server_buf, sizeof(udp_server_buf) - 1, 0,

45. (struct sockaddr *)&from_addr,

46. (socklen_t *)&from_addr_len);

47. if (ret > 0) {

48. ESP_LOGI(TAG, "Receive udp multicast from %s:%d, data is %s",

49. inet_ntoa (((struct sockaddr_in *)&from_addr)->sin_addr),

50. ntohs(((struct sockaddr_in *)& from_addr)->sin_port),

51. udp_server_buf);

52. //Upon reception of multicast request, send data communication port of peer through unicast

53. if (!strcmp(udp_server_buf, "Are you Espressif IOT Smart Light")) {

54. ret = sendto(sockfd, udp_server_send_buf, strlen(udp_server_send_buf),

55. 0, (struct sockaddr *)&from_addr, from_addr_len);

56. if (ret < 0) {

57. ESP_LOGE(TAG, "Error occurred during sending: errno %d", errno);

58. } else {

59. ESP_LOGI(TAG, "Message sent successfully");

60. }

61. }

62. }

63. }

64. exit:

65. close(sockfd);

66. return err;

67. }

Chapter 8. Local Control 167

4. Running result

Add the sender and receiver code to the Wi-Fi Station example to ensure they are connected
to the same Wi-Fi router. The log of multicast sending is as follows:
I (752) wifi :mode : sta (c4:4f:33:24:65:f1)

I (752) wifi:enable tsf

I (752) wifi station: wifi init sta finished.

I (772) wifi:new: <6,0>, old: <1,0>, ap: <255,255>, sta: <6,0>, prof:1

I (772) wifi:state: init -> auth (b0)

I (792) wifi:state: auth -> assoc (0)

I (802) wifi:state: assoc -> run (10)

I (822) wifi:connected with myssid, aid = 2, channel 6, BW20, bssid = 34:29:12:

43:c5:40

I (822) wifi:security: WPA2-PSK, phy: bgn, rssi: -17

I (822) wifi: pm start, type: 1

I(882) wifi:AP’s beacon interval = 102400 us, DTIM period = 1

I (1542) esp_netif_handlers: sta ip: 192.168.3.5, mask: 255.255.255.0, gw: 192.

168.3.1

I (1542) wifi station: got ip:192.168.3.5 I (1542) wifi station: connected to ap

SSID: myssid password: 123456 8

I (1552) wifi station: Message sent successfully

I (1632) wifi station: Receive udp unicast from 192.168.3.80:3333, data is ESP32

-C3 Smart Light https 443

The log of multicast reception is as follows:
I (806) wifi:state: init -> auth (b0)

I (816) wifi:state: auth -> assoc (0)

I (836) wifi:state: assoc -> run (10)

I (966) wifi:connected with myssid, aid = 1, channel 6, BW20, bssid = 34:29:12:

43:c5:40

I (966) wifi:security: WPA2-PSKI phy: bgn, rssi: -29

I (976) wifi:pm start, type: 1

I (1066) wifi:AP’s beacon interval = 102400 us, DTIM period = 1

I (2056) esp_netif_handlers: sta ip: 192.168.3.80, mask: 255.255.255.0, gw: 192.

168.3.1

I (2056) wifi station: got ip:192.168.3.80

I (2056) wifi station: connected to ap SSID: myssid password: 12345678
W (18476) wifi: <ba-add>idx:0 (ifx:0, 34:29:12:43:c5:40), tid:0, ssn:4, winSize: 64

W (23706) wifi: <ba-add>idx:1 (ifx:0, 34:29:12:43:c5:40), tid:5, ssn:0, winSize: 64

I (23706) wifi station: Receive udp multicast from 192.168.3.5:3333, data is Are

you Espressif IOT Smart Light

Similar to broadcasting logs, the sender sends packets of specific data, and the receiver
informs the sender of the application protocol and port number of data communication.

168 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

8.2.3 Comparison Between Broadcast and Multicast

The comparison between broadcast and multicast is shown in Table 8.1. It can be seen
that multicast has smaller bandwidth overhead, and devices in the LAN can join or leave
multicast groups of interest or pre-determined to receive and send data, which is more
flexible. For broadcast, all devices in the LAN will receive the packet, which will increase
burden on other devices in the LAN and also increase burden on the LAN bandwidth.

Table 8.1. Comparison between broadcast and multicast

Comparison Broadcast Multicast

Principle
Packets are sent to all hosts
connected to the network.

Packets are sent only to their
intended recipients in the network.

Transmission One-to-all One-to-many

Management No need for group management Need group management

Network
May cause network band-

width waste and congestion
Controllable network bandwidth

Rate Slow Fast

8.2.4 Multicast Application Protocol mDNS for Local Discovery

In computer networks, the Multicast DNS (mDNS) protocol resolves host names to IP ad-
dresses in small networks that do not include local name servers. This is a zero-configuration
server. mDNS has basically the same programming interface, packet format, and operation
mode as the traditional domain name system (DNS).

mDNS was first proposed by Bill Woodcock and Bill Manning in the IETF in 2000. It was
finally published as a standard protocol in RFC 6762 by Stuart Cheshire and Marc Krochmal
in 2013, and implemented by Apple Bonjour and the open source Avahi software packages.
It is included in most Linux distributions (excerpted from Wikipedia).

1. Introduction to mDNS protocol

mDNS is a domain name resolution protocol for local networks, which uses port 5353 and
multicast address 224.0.0.251. It is an application protocol running on UDP. Unlike tra-
ditional DNS protocols, mDNS does not require a DNS server to perform domain name
resolution, which can avoid configuratingdomain name servers on local networks.

After a host with mDNS service enabled joins a LAN, it will first multicast a message to the
multicast address 224.0.0.251 of the LAN, “Who am I? What is my IP address? What are the

Chapter 8. Local Control 169

services and port numbers I provide?”. After receiving the message, other hosts with mDNS
service enabled on the LAN will record the message and respond with “Who is it? What is
its IP address? What is the service and port number it provides?”. If a host wants to query
the mDNS domain name, it will first query its own cache information. If it is not found, it
will multicast a query to the LAN to ask for the IP address, services, and port numbers of the
domain name.

Then how can a host distinguish whether a domain name is from DNS or mDNS when
querying a domain name?

mDNS domain names differ from DNS domain names by the suffix “.local”.

2. Using mDNS component based on ESP-IDF

NOTE: mDNS component

ESP-IDF provides the mDNS component, which helps you develop applications. You may
refer to the mDNS service in the ESP-IDF Programming Guide for relevant interfaces.
For mDNS component, please visit https://github.com/espressif/esp-idf/tree/v4.3.2/
components/mdns. For mDNS service, please visit https://bookc3.espressif.com/mdns.

This section mainly introduces how to use the mDNS component for developing devices to
be discovered.
1. esp_err_t esp_mdns_discovery_start(void)

2. {

3. char *host_name = "my_smart_light";

4. char *instance_name = "esp32c3_smart_light";

5.

6. //Initialise the mDNS component

7. if (mdns_init() ! = ESP_OK) {

8. ESP_LOGE(TAG, "mdns_init fail");

9. return ESP_FAIL;

10. }

11.

12. //Set host name (the DNS domain name tag to be queried by other hosts)

13. if (mdns_hostname_set(host_name) ! = ESP_OK) {

14. ESP_LOGE(TAG, "mdns_hostname_set fail");

15. goto err;

16. }

17. ESP_LOGI(TAG, "mdns hostname set to: [%s]", host_name);

18.

19. //Set mDNS instance name to be discovered by mDNS LAN

20. if (mdns_instance_name_set(instance_name) ! = ESP_OK) {

21. ESP_LOGE(TAG, "mdns_instance_name_set fail");

22. goto err;

170 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf/tree/v4.3.2/components/mdns
https://github.com/espressif/esp-idf/tree/v4.3.2/components/mdns
https://bookc3.espressif.com/mdns

23. }

24.

25. //Set service TXT field data (optional)

26. mdns_txt_item_t serviceTxtData[1] = {

27. {"board", "esp32c3"}

28. };

29.
30.//Add HTTP service; port 80 corresponds to mDNS service. The second parameter (application layer

31.protocol) and the third parameter (transport layer protocol) need to correspond to each other.

32. if (mdns_service_add(instance_name, "_http", "_tcp", 80,

33. serviceTxtData, 1) ! = ESP_OK) {

34. ESP_LOGE(TAG, "mdns_instance_name_set fail");

35. goto err;

36. }

37.

38. //Set service TXT field data

39. if (mdns_service_txt_item_set("_http", "_tcp", "path", "/foobar") ! =ESP_OK){

40. ESP_LOGE(TAG, "mdns_service_txt_item_set fail");

41. goto err;

42. }

43. return ESP_OK;

44. err:

45. mdns_free();

46. return ESP_FAIL;

47. }

The above code implements the mDNS service with the domain name my_smart_light

and the node esp32c3_smart_light. Your other hosts can query the node esp32c3_
smart_light through the mDNS service. The smart light host will reply with its own
domain name (my_smart_light), corresponding IP address, provided service (HTTP),
corresponding server port (80), and TXT node field (path=/foobar board=esp32c3).

Source code

For complete code of the example, please refer to book-esp32c3-iot-projects/
test case/mdns discovery.

You can use the Windows command dns-sd -L esp32c3_smart_light_http to query
the information of the host in the LAN. The command is as follows:
c:\Users> dns-sd -L esp32c3 smart light http
Lookup esp32c3_smart_light._http._tcp.local

14:25:09.682 esp32c3_smart_light._http._tcp.local. can be reached at my_smart_

light.local.:80 (interface 6)

path=/foobar board=esp32c3

Chapter 8. Local Control 171

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/mdns_discovery
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/mdns_discovery

NOTE: “Bonjour”

“Bonjour” is a network configuration software that supports zero-configuration network-
ing service and can automatically discover computers, devices, and services on the IP
network. It needs to be installed before using the command dns-sd. You can download
Bonjour at https://bonjour.en.softonic.com/.

You can also use the Linux command avahi-browse -a --resolve to query service
information of all mDNS hosts in the LAN. The command is as follows:
avahi-browse -a --resolve
= enp1s0 IPv4 esp32c3_smart_light Web Site local

hostname = [my_smart_light.local]

address = [192.168.3.5]

port = [80]

txt = ["board=esp32c3" "path=/foobar"]

8.3 Common Communication Protocols for Local Data
After introducing how to discover devices in the LAN, this section will introduce how to
control the devices. Taking the smart light as an example, the simplest control is to turn the
smart light on and off, which is essentially the GPIO pin level being pulled high or low at the
software level. Controlling the on and off of the smart light through other devices is nothing
more than providing commands to perform GPIO operations. So how are these commands
sent from a smartphone to the smart light? What is the format of these commands? What
protocols are used? This section will answer these questions one by one. This section
mainly introduces the transmission of data conforming to the TCP/IP protocol through Wi-
Fi wireless transmission media, and the transmission of data conforming to the Bluetooth
data communication protocol through the Bluetooth wireless transmission media.

8.3.1 Transmission Control Protocol (TCP)

TCP is one of the major protocols in the Internet protocol family. In the TCP/IP model, TCP
serves as the transport layer protocol, providing reliable data transmission for application
layer protocols such as HTTP, MQTT, FTP, etc. The TCP/IP model is shown in Figure 8.2.

1. Introduction to TCP

TCP is a connection-oriented, reliable, byte-stream-based communication protocol at the
transport layer, defined by RFC 793 of IETF.

• Connection-oriented. Before sending data using TCP, a connection must be established
between the sender and receiver, which is commonly referred to as a three-way hand-
shake.

172 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://bonjour.en.softonic.com/

Figure 8.2. TCP/IP model

• Reliable. When sending data using TCP, the receiver’s receipt can be guaranteed. If data
is lost, the lost data will be retransmitted. TCP can also ensure that the receiver receives
data in order.

• Byte-stream-based. When sending data using TCP, the application layer data is first
written into the TCP buffer. Then, TCP controls the transmission of data in a byte-
stream-based manner, which is independent of the length of the message written by the
application layer. Therefore, it is a byte-stream-based protocol.

The process of TCP sending upper-layer application data to the receiver is as follows:

(1) The upper-layer application program writes the application data into the TCP buffer.

(2) The TCP buffer packages the data into a TCP message and sends it to the network
layer.

(3) The receiver receives the TCP message and puts it into the TCP buffer.

(4) After a certain amount of data is received, the data is sorted and reorganised before
being reported to the application layer.

The process of sending and receiving data using TCP is shown in Figure 8.3.

2. Creating a TCP server using socket

Source code

For the source code of the function esp create tcp server(), please refer to book-
esp32c3-iot-projects/test case/tcp socket.

The function esp_create_tcp_server() can create a TCP server, including creating a
TCP socket, configuring and binding the port, listening, receiving data, and sending data.
Compared with TCP clients, UDP servers and clients, the code flow of TCP servers is more

Chapter 8. Local Control 173

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/tcp_socket
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/tcp_socket

Figure 8.3. Data sending and receiving process using TCP

complicated, and involves two socket functions, listen and accept, which are unique to
TCP servers. The code is as below:
1. esp_err_t esp_create_tcp_server(void)

2. {

3. int len;

4. int keepAlive = 1;

5. int keepIdle = 5;

6. int keepInterval = 5;

7. int keepCount = 3;

8. char rx_buffer[128] = {0};

9. char addr_str[32] = {0};

10. esp_err_t err = ESP_FAIL;

11. struct sockaddr_in server_addr;

12.

13. //Create a TCP socket

14. int listenfd = socket(AF_INET, SOCK_STREAM, 0);

15. if (listenfd < 0) {

16. ESP_LOGE(TAG, "create socket error");

17. return err;

18. }

174 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

19. ESP_LOGI(TAG, "create socket success, listenfd : %d", listenfd);

20.

21. //Enable SO_REUSEADDR, allowing the server to bind the connected address

22. int opt = 1;

23. int ret = setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt,

24. sizeof(opt));

25. if (ret < 0) {

26. ESP_LOGE(TAG, "Failed to set SO_REUSEADDR. Error %d", errno);

27. goto exit;

28. }

29.

30. //Bind the server to an interface with all-zero IP address and port number 3333

31. server_addr.sin_family = AF_INET;

32. server_addr.sin_addr.s_addr = INADDR_ANY;

33. server_addr.sin_port = htons(3333);

34. ret = bind(listenfd, (struct sockaddr *) &server_addr, sizeof(server_addr));

35. if (ret < 0) {

36. ESP_LOGE(TAG, "bind socket failed, socketfd: %d, errno : %d",

37. listenfd, errno);

38. goto exit;

39. }

40. ESP_LOGI(TAG, "bind socket success");

41. ret = listen(listenfd, 1);

42. if (ret < 0) {

43. ESP_LOGE(TAG, "listen socket failed, socketfd : %d, errno : %d",

44. listenfd, errno);

45. goto exit;

46. }

47. ESP_LOGI(TAG, "listen socket success");

48. while (1) {

49. struct sockaddr_in source_addr;

50. socklen_t addr_len = sizeof(source_addr);

51.

52. //Wait for new TCP connection, and return the communicating socket with the peer

53. int sock = accept(listenfd, (struct sockaddr *)&source_addr, &addr_len);

54. if (sock < 0) {

55. ESP_LOGE(TAG, "Unable to accept connection: errno %d", errno);

56. break;

57. }

58.

59. //Enable TCP keep-alive function to prevent zombie clients

60. setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, &keepAlive, sizeof(int));

61. setsockopt(sock, IPPROTO_TCP, TCP_KEEPIDLE, &keepIdle, sizeof(int));

62. setsockopt(sock, IPPROTO_TCP, TCP_KEEPINTVL,&keepInterval, sizeof(int));

63. setsockopt(sock, IPPROTO_TCP, TCP_KEEPCNT, &keepCount, sizeof(int));

64. if (source_addr. sin_family == PF_INET) {

65. inet_ntoa_r(((struct sockaddr_in *)&source_addr)->sin_addr,

Chapter 8. Local Control 175

66. addr_str, sizeof(addr_str) - 1);

67. }

68. ESP_LOGI(TAG, "Socket accepted ip address: %s", addr_str);

69. do {

70. len = recv(sock, rx_buffer, sizeof(rx_buffer) - 1, 0);

71. if (len < 0) {

72. ESP_LOGE(TAG, "Error occurred during receiving: errno %d", errno);

73. } else if (len == 0) {

74. ESP_LOGW(TAG, "Connection closed");

75. } else {

76. rx_buffer[len] = 0;

77. ESP_LOGI(TAG, "Received %d bytes: %s", len, rx_buffer);

78. }

79. } while (len > 0);

80. shutdown(sock, 0);

81. close(sock);

82. }

83. exit:

84. close(listenfd);

85. return err;

86. }

The above code creates a TCP server and listens to the application data on port 3333. The
socket option SO_REUSEADDR allows the server to bind to the address of an already es-
tablished connection, which is useful for the code on the server side. The socket option
SO_KEEPALIVE enables the TCP keep-alive function, which can detect some abnormally
disconnected clients and prevent them from occupying server processes. Socket options
TCP_KEEPIDLE, TCP_KEEPINTVL and TCP_KEEPCNT correspond to the idle time since
the last data sent by the peer, the interval time for sending TCP keep-alive messages, and
the maximum number of retries for sending messages, respectively. For example, if a TCP
client sets TCP_KEEPIDLE to 5, it means that if there is no data communication between
the client and the server within 5 seconds, the client needs to send a TCP keep-alive message
to the server; if the client sets TCP_KEEPINTVL to 5, it means that if the client sends a TCP
keep-alive message to the server and the server does not reply within 5 seconds, the client
needs to resend the message to the server; if the client sets TCP_KEEPCNT to 3, it means
that the client can retry sending the TCP keep-alive message to the server for a maximum of
3 times.

3. Creating a TCP client using socket

Source code

For the source code of the function esp create tcp client(), please refer to book-
esp32c3-iot-projects/test case/tcp socket.

176 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/tcp_socket
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/tcp_socket

The function esp_create_tcp_client() can create a TCP connection between a TCP
client and a server, including creating of a TCP socket, configuring the destination address
and port, connecting, and sending data. The code is as below:
1. #define HOST_IP "192.168.3.80"

2. #define PORT 3333

3.

4. esp_err_t esp_create_tcp_client(void)

5. {

6. esp_err_t err = ESP_FAIL;

7. char *payload = "Open the light";

8. struct sockaddr_in dest_addr;

9. dest_addr.sin_addr.s_addr = inet_addr(HOST_IP);

10. dest_addr.sin_family = AF_INET;

11. dest_addr.sin_port = htons(PORT);

12.

13. //Create a TCP socket

14. int sock = socket(AF_INET, SOCK_STREAM, 0);

15. if (sock < 0) {

16. ESP_LOGE(TAG, "Unable to create socket: errno %d", errno);

17. return err;

18. }

19. ESP_LOGI(TAG, "Socket created, connecting to %s:%d", HOST_IP, PORT);

20.

21. //Connect to the TCP server

22. int ret = connect(sock, (struct sockaddr *)&dest_addr, sizeof(dest_addr));

23. if (ret ! = 0) {

24. ESP_LOGE(TAG, "Socket unable to connect: errno %d", errno);

25. close(sock);

26. return err;

27. }

28. ESP_LOGI(TAG, "Successfully connected");

29.

30. //Send TCP data

31. ret = send(sock, payload, strlen(payload), 0);

32. if (ret < 0) {

33. ESP_LOGE(TAG, "Error occurred during sending: errno %d", errno);

34. goto exit;

35. }

36. err = ESP_OK;

37. exit:

38. shutdown(sock, 0);

39. close(sock);

40. return err;

41. }

After the client establishes a TCP connection with the server, it sends the TCP data “Open the

Chapter 8. Local Control 177

light” to the server. In addition to using TCP sockets, the client can also use TCP debugging
tools to simulate the client for TCP connection.

Based on the above TCP client and server code, and combined with the requirement of
controlling the smart light through a smartphone, you can implement code of TCP server on
the smart light device and code of TCP client on the smartphone. After establishing a TCP
connection between the smartphone and the smart light, the smartphone can send data. For
example, in the above code, the TCP client sends the data “Open the light”; and after the
smart light receives the data, it can turn on the light by pulling up the GPIO pin level of the
smart light.

8.3.2 HyperText Transfer Protocol (HTTP)

HTTP is an application protocol based on the transport layer. It is the data communication
foundation of the World Wide Web (WWW or Web), which specifies the format and method
of data transmission between clients and servers. Clients can use HTTP to obtain the on/off
status of the smart light (GET) or turn the smart light on and off (POST) through HTTP re-
quests, and each operation will have a response from the peer. Therefore, HTTP is completer
and more reasonable in applications than simple TCP.

1. Introduction to HTTP

HTTP is a standard for requests and responses between clients (users) and servers (web-
sites). The client establishes a TCP connection with the server through a web browser, web
crawler or other tools, and then sends requests to read server data, upload data or forms
to the server, and read the response status of the server, such as “HTTP/1.1 200 OK”, as
well as the returned content (such as requested files, error messages or other information).
Resources requested through HTTP are identified by uniform resource identifiers (URIs).

In versions 0.9 and 1.0 of HTTP, the TCP connection is closed after each request and re-
sponse. In version 1.1 of HTTP, a mechanism for maintaining the connection was intro-
duced, allowing a connection to repeat multiple requests and responses, reducing TCP hand-
shake time and network overhead before each data request.

Common HTTP request methods include:

• GET: Request the specified URI resource.
• POST: Submit data to the specified URI resource and request the server to process it

(such as submitting a form or uploading a file).
• DELETE: Request the server to delete the resource identified by the URI.

For local control of smart lights, you can use the GET method to obtain their status, and use
the POST method to control them.

178 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

2. Creating an HTTP server using ESP-IDF component

Source code

For the source code of the function esp start webserver(), please refer to book-esp
32c3-iot-projects/test case/https server.

The function esp_start_webserver() can create an HTTP server. The callback func-
tions corresponding to the GET and POST operations on the server side are defined as
esp_light_get_handler() and esp_light_set_handler() respectively, and must
be registered through the function httpd_register_uri_handler() after calling the
function httpd_start() on the server side.
1. char buf[100] = "{\\"status\\": true}";

2. //Callback function of the HTTP GET request

3. esp_err_t esp_light_get_handler(httpd_req_t *req)

4. {

5. //Send data in JSON containing the status of smart lights to the client

6. httpd_resp_send(req, buf, strlen(buf));

7. return ESP_OK;

8. }

9.

10. //Callback function of the HTTP POST request

11. esp_err_t esp_light_set_handler(httpd_req_t *req)

12. {

13. int ret, remaining = req->content_len;

14. memset(buf, 0 , sizeof(buf));

15. while (remaining > 0) {

16. //Read HTTP request data

17. if ((ret = httpd_req_recv(req, buf, remaining)) <= 0) {

18. if (ret == HTTPD_SOCK_ERR_TIMEOUT) {

19. continue;

20. }

21. return ESP_FAIL;

22. }

23. remaining -= ret;

24. }

25. ESP_LOGI(TAG, "%.*s", req->content_len, buf);

26.

27. //TODO: Read and parse the data; then control the smart light

28. return ESP_OK;

29. }

30.

31. //Callback function corresponding to GET

32. static const httpd_uri_t status = {

33. .uri = "/light",

34. .method = HTTP_GET,

Chapter 8. Local Control 179

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/https_server
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/https_server

35. .handler = esp_light_get_handler,

36. };

37.

38. //Callback function corresponding to POST

39. static const httpd_uri_t ctrl = {

40. .uri = "/light",

41. .method = HTTP_POST,

42. .handler = esp_light_set_handler,

43. };

44.

45. esp_err_t esp_start_webserver()

46. {

47. httpd_handle_t server = NULL;

48. httpd_config_t config = HTTPD_DEFAULT_CONFIG();

49. config.lru_purge_enable = true;

50.

51. //Start the HTTP server

52. ESP_LOGI(TAG, "Starting server on port: ’%d’", config. server_port);

53. if (httpd_start(&server, &config) == ESP_OK) {

54. //Set the callback function corresponding to the HTTP URI

55. ESP_LOGI(TAG, "Registering URI handlers");

56. httpd_register_uri_handler(server, &status);

57. httpd_register_uri_handler(server, &ctrl);

58. return ESP_OK;

59. }

60. ESP_LOGI(TAG, "Error starting server!");

61. return ESP_FAIL;

62. }

The above code implements an HTTP server for querying and setting the status of the smart
light. When accessing http://[ip]/light through a browser, the browser will return
{"status": true} (as shown in Figure 8.4) or {"status": false} to indicate the
status of the smart light.

Figure 8.4. Using HTTP to query the status of the smart light

Press F12 on the current page to enter the Console. Enter the following command and press
“Enter” to send a POST request.

180 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

$ var xhr = new XMLHttpRequest();
$ xhr.open("POST", "192.168.3.80/light", true);
$ xhr.send("{\"status\": false}");

Figure 8.5 shows how to use HTTP to set the status of the smart light.

Figure 8.5. Using HTTP to set the status of the smart light

At this point, the server will receive the HTTP POST request {"status": false}. The
log of using HTTP to set the status of the smart light is as follows:
I (773) wifi:mode:sta (30:ae:a4:80:48:98)

I (773) wifi:enable tsf

I (773) wifi station: wifi init sta finished.

I (793) wifi:new: <6,0>, old: <1,0>, ap: <255,255>, sta: <6,0>, prof:1

I (793) wifi:state: init -> auth (be)

I (813) wifi:state: auth -> assoc (0)

I (823) wifi:state: assoc -> run (10)

I (873) wifi:connected with myssid, aid = 1, channel 6, BW20, bssid =

34:29:12:43:c5:40

I (873) wifi:security: WPA2-PSK, phy: bgn, rssi: -21

I (883) wifi:pm start, type: 1

I (943) wifi:AP’s beacon interval = 102400 us, DTIM period = 1

I (1543) esp netif handlers: sta ip: 192.168.3.80, mask: 255.255.255.0, gw: 192.

168.3.1

I (1543) wifi station: got ip:192.168.3.80

I (1543) wifi station: connected to ap SSID: myssid password: 12345678

I (1553) wifi station: Starting server on port: ’80’

I (1563) wifi station: Registering URI handlers

W (11393) wifi:<ba-add>idx:0 (ifx:0,34:29:12:43:c5:40), tid:7, ssn:4, winSize:64

I (11413) wifi station: {"status": false}

Refreshing the current page at this time can continue to query the status of the smart light,
and the previously set status will be displayed, as shown in Figure 8.6.

Figure 8.6. Displaying the modified status of the smart light

Chapter 8. Local Control 181

8.3.3 User Datagram Protocol (UDP)

Subsections 8.3.1 and 8.3.2 respectively introduce TCP and HTTP, both of which are char-
acterised by reliable transmission. This subsection will introduce another protocol at the
transport layer, UDP. Unlike TCP, UDP is an unreliable transmission protocol. Common
application protocols based on UDP include DNS, TFTP, and SNMP.

1. Introduction to UDP

UDP is a simple datagram-oriented communication protocol, which is located at the trans-
port layer like TCP. UDP was designed by David P. Reed in 1980 and defined in RFC 768
(excerpted from Wikipedia). UDP is an unreliable transmission protocol. After data is sent
through UDP, the underlying layer does not retain the data to prevent loss during trans-
mission. UDP itself does not support error correction, queue management, or congestion
control, but supports checksums.

UDP is a connectionless protocol. It does not need to establish a connection before sending
data, unlike TCP. Data can be sent directly to the peer without establishing a connection.
Because no connection needs to be established during data transmission, there is no need to
maintain connection status, including sending and receiving status.

UDP is only responsible for transmission, so applications that use this protocol need to
do more control over how data is sent and processed, such as how to ensure that peer’s
applications receive the data correctly and in order.

Compared with TCP, UDP cannot guarantee the safe and reliable transmission of data. You
may wonder why the UDP protocol is still used. The connectionless nature of UDP results in
less network and time overhead than TCP. The unreliable transmission of UDP (mainly the
inability to guarantee retransmission after packet loss) is more suitable for applications such
as streaming media, real-time multiplayer games, and IP voice, where losing a few packets
will not affect the application. On the other hand, if TCP is used for retransmission, it will
greatly increase network latency.

2. Creating a UDP server using socket

Source code

For the source code of the function esp create udp server(), please refer to book-
esp32c3-iot-projects/test case/udp socket.

Creating a UDP server using socket is similar to creating a multicast group receiver as in-
troduced in subsection 8.2.2. Both involve creating a UDP socket, configuring the bound
port, and receiving and sending data. The function esp_create_udp_server() sets the

182 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/udp_socket
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/udp_socket

SO_REUSEADDR option, allowing the server to bind the address of the already established
connection. The code is as below:
1. esp_err_t esp_create_udp_server(void)

2. {

3. char rx_buffer[128];

4. char addr_str[32];

5. esp_err_t err = ESP_FAIL;

6. struct sockaddr_in server_addr;

7. //Create a UDP socket

8. int sock = socket(AF_INET, SOCK_DGRAM, 0);

9. if (sock < 0) {

10. ESP_LOGE(TAG, "create socket error");

11. return err;

12. }

13. ESP_LOGI(TAG, "create socket success, sock : %d", sock);

14. //Enable SO_REUSEADDR, allowing the server to bind connected address

15. int opt = 1;

16. int ret = setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));

17. if (ret < 0) {

18. ESP_LOGE(TAG, "Failed to set SO_REUSEADDR. Error %d", errno);

19. goto exit;

20. }

21. //Bind the server to an interface with all-zero IP address and port number 3333

22. server_addr.sin_family = AF_INET;

23. server_addr.sin_addr.s_addr = INADDR_ANY;

24. server_addr.sin_port = htons(PORT);

25. ret = bind(sock, (struct sockaddr *) &server_addr, sizeof(server_addr));

26. if (ret < 0) {

27. ESP_LOGE(TAG, "bind socket failed, socketfd: %d, errno : %d", sock, errno);

28. goto exit;

29. }

30. ESP_LOGI(TAG, "bind socket success");

31. while (1) {

32. struct sockaddr_in source_addr;

33. socklen_t addr_len = sizeof(source_addr);

34. memset(rx_buffer, 0, sizeof(rx_buffer));

35. int len = recvfrom(sock, rx_buffer, sizeof(rx_buffer) - 1, 0,

36. (struct sockaddr *)&source_addr, &addr_len);

37. // Reception error

38. if (len < 0) {

39. ESP_LOGE(TAG, "recvfrom failed: errno %d", errno);

40. break;

41. } else { //Data is received

42. if (source_addr. sin_family == PF_INET) {

43. inet_ntoa_r(((struct sockaddr_in *)&source_addr)->sin_addr,

44. addr_str, sizeof(addr_str) - 1);

Chapter 8. Local Control 183

45. }

46. //String ends with NULL

47. rx_buffer[len] = 0;

48. ESP_LOGI(TAG, "Received %d bytes from %s:" , len, addr_str);

49. ESP_LOGI(TAG, "%s", rx_buffer);

50. }

51. }

52. exit:

53. close(sock);

54. return err;

55. }

3. Creating a UDP client using socket

Source code

For the source code of the function esp create udp client(), please refer to book-
esp32c3-iot-projects/test case/udp socket.

With the function esp_create_udp_client(), the UDP client can send data, including
creating UDP sockets, configuring destination addresses and ports, calling socket interface
sendto() to send data. The code is as below:
1. esp_err_t esp_create_udp_client(void)

2. {

3. esp_err_t err = ESP_FAIL;

4. char *payload = "Open the light";

5. struct sockaddr_in dest_addr;

6. dest_addr.sin_addr.s_addr = inet_addr(HOST_IP);

7. dest_addr.sin_family = AF_INET;

8. dest_addr.sin_port = htons(PORT);

9.

10. //Create a UDP socket

11. int sock = socket(AF_INET, SOCK_DGRAM, 0);

12. if (sock < 0) {

13. ESP_LOGE(TAG, "Unable to create socket: errno %d", errno);

14. return err;

15. }

16.

17. //Send data

18. int ret = sendto(sock, payload, strlen(payload), 0,

19. (struct sockaddr *)&dest_addr, sizeof(dest_addr));

20. if (ret < 0) {

21. ESP_LOGE(TAG, "Error occurred during sending: errno %d", errno);

22. goto exit;

23. }

24. ESP_LOGI(TAG, "Message send successfully");

184 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/udp_socket
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/udp_socket

25. err = ESP_OK;

26. exit:

27. close(sock);

28. return err;

29. }

UDP clients do not need to establish a connection with the server, and can directly send data
to the server. Since UDP creates unreliable connections, the data sent, such as “Open the
light,” may be lost, causing the peer to fail to receive it. Therefore, when writing code for
the client and server, some logic should be added to the application layer code to ensure
that data is not lost. For example, when the client sends “Open the light” to the server, the
server returns “Open the light OK” after receiving it successfully. If the client receives the
data within 1 second, it means that the data has been sent to the server correctly. If the
client does not receive it within 1 second, it needs to send the data “Open the light” again.

8.3.4 Constrained Application Protocol (CoAP)

With the rapid development of IoT technology, a series of protocols have been created for
IoT devices. Most IoT devices have limited resources, such as RAM, flash, CPU, network
bandwidth, etc. More memory and network bandwidth are often required if they want to
use TCP and HTTP protocols for data transmission. If UDP can be used for data transmis-
sion, is there an application protocol similar to HTTP? The answer is yes, CoAP is designed
according to the REST architecture of HTTP.

1. Introduction to CoAP

CoAP is a protocol similar to web applications in IoT devices. It is defined in RFC 7252
and can be used for resource-constrained IoT devices, allowing those resource-constrained
devices called nodes to communicate with a wider range of the Internet using similar pro-
tocols. CoAP is designed for devices on the same constrained network (such as low-power,
lossy networks), between devices and general nodes on the Internet, and between devices
on different constrained networks connected by the Internet.

CoAP is based on the request and response model, similar to HTTP, which can make up for
the shortcomings of unreliable transmission of UDP and ensure that data is not lost or disor-
dered. The server’s resources are identified by URLs (such as coap://[IP]/id/light_
status) to access the status of a smart light. The client accesses the server’s resources
through the URL of a resource and operate the server’s resources through four request meth-
ods (GET, PUT, POST, and DELETE).

CoAP also has the following features:

• Both the client and server can independently send requests to each other.
• Supports reliable data transmission.

Chapter 8. Local Control 185

• Supports multicast and broadcast, enabling one-to-many data transmission.
• Supports communication with low power consumption and non-persistent connections.
• Compared with HTTP, its header is lighter.

2. Creating a CoAP server using ESP-IDF component

The following code shows how to create a CoAP server using ESP-IDF component, which
provides GET and PUT operations for resource retrieval and modification in CoAP. CoAP pro-
tocol operations are generally fixed, and you only need to focus on your own resource URI
paths and the operations you need to provide. The function coap_resource_init() can
be used to set the URI for resource access, and the function coap_register_handler()

can be used to register GET and PUT callback functions corresponding to the resource URI.

Source code

For the source code of the functions coap resource init() and coap register

handler(), please refer to book-esp32c3-iot-projects/test case/coap.

1. static char buf[100] = "{\"status\": true}";

2.

3. //Callback function of GET method in CoAP

4. static void esp_coap_get(coap_context_t *ctx, coap_resource_t *resource,

5. coap_session_t *session, coap_pdu_t *request,

6. coap_binary_t *token, coap_string_t *query,

7. coap_pdu_t *response)

8. {

9. coap_add_data_blocked_response(resource, session, request, response,

10. token, COAP_MEDIATYPE_TEXT_PLAIN, 0,

11. strlen(buf), (const u_char *)buf);

12. }

13.

14. //Callback function of PUT method in CoAP

15. static void esp_coap_put(coap_context_t *ctx,

16. coap_resource_t *resource,

17. coap_session_t *session,

18. coap_pdu_t *request,

19. coap_binary_t *token,

20. coap_string_t *query,

21. coap_pdu_t *response)

22. {

23. size_t size;

24. const unsigned char *data;

25. coap_resource_notify_observers(resource, NULL);

26.

27. //Read the received CoAP protocol data

28. (void)coap_get_data(request, &size, &data);

186 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/coap

29. if (size) {

30. if (strncmp((char *)data, buf, size)) {

31. memcpy(buf, data, size);

32. buf[size] = 0;

33. response->code = COAP_RESPONSE_CODE(204);

34. } else {

35. response->code = COAP_RESPONSE_CODE(500);

36. }

37. } else { //A size of 0 indicates a receiving error

38. response->code = COAP_RESPONSE_CODE(500);

39. }

40. }

41.

42. static void esp_create_coap_server(void)

43. {

44. coap_context_t *ctx = NULL;

45. coap_address_t serv_addr;

46. coap_resource_t *resource = NULL;

47. while (1) {

48. coap_endpoint_t *ep = NULL;

49. unsigned wait_ms;

50.

51. //Create a CoAP server socket

52. coap_address_init(&serv_addr);

53. serv_addr.addr.sin6.sin6_family = AF_INET6;

54. serv_addr.addr.sin6.sin6_port = htons(COAP_DEFAULT_PORT);

55.

56. //Create CoAP ctx

57. ctx = coap_new_context(NULL);

58. if (!ctx) {

59. ESP_LOGE(TAG, "coap_new_context() failed");

60. continue;

61. }

62.

63. //Set the CoAP protocol node

64. ep = coap_new_endpoint(ctx, &serv_addr, COAP_PROTO_UDP);

65. if (!ep) {

66. ESP_LOGE(TAG, "udp: coap_new_endpoint() failed");

67. goto clean_up;

68. }

69.

70. //Set CoAP protocol resource URI

71. resource = coap_resource_init(coap_make_str_const("light"), 0);

72. if (!resource) {

73. ESP_LOGE(TAG, "coap_resource_init() failed");

74. goto clean_up;

75. }

Chapter 8. Local Control 187

76.

77. //Register callback functions of GET and PUT methods corresponding to CoAP resource URI

78. coap_register_handler(resource, COAP_REQUEST_GET, esp_coap_get);

79. coap_register_handler(resource, COAP_REQUEST_PUT, esp_coap_put);

80.

81. //Set CoAP GET resource observable

82. coap_resource_set_get_observable(resource, 1);

83.

84. //Add resource to CoAP ctx

85. coap_add_resource(ctx, resource);

86. wait_ms = COAP_RESOURCE_CHECK_TIME * 1000;

87. while (1) {

88. //Wait to receive CoAP data

89. int result = coap_run_once(ctx, wait_ms);

90. if (result < 0) {

91. break;

92. } else if (result && (unsigned)result < wait_ms) {

93. //Decrease waiting time

94. wait_ms -= result;

95. } else {

96. //Reset waiting time

97. wait_ms = COAP_RESOURCE_CHECK_TIME * 1000;

98. }

99. }

100. }

101.clean_up:

102. coap_free_context(ctx);

103. coap_cleanup();

104.}

The above code creates a CoAP server, and provides the GET method to query the status of
the smart light and the PUT method to set the status of the smart light. You can use the
Chrome browser to install CoAP to debug the client Copper plugin and simulate the CoAP
client.

Open the Chrome plugin Copper, enter the URL coap://[ip]/light, and press “Enter”
to connect to the server. Figure 8.7 shows the connection of the CoAP plugin.

After the connection is successful, click the “GET” button in the upper left corner to get the
status and display {"status": true}, the query status of CoAP plugin is shown in Figure
8.8.

Click the “PUT” button in the upper left corner, and modify the data in “Payload” → “Out-
going” to {"status": false} to set the status of the smart light to false. Figure 8.9
shows the configuration status of the CoAP plugin.

At this time, click the “GET” button in the upper left corner again to get the status, which

188 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 8.7. Connection of CoAP plugin

Figure 8.8. Query status of CoAP plugin

Figure 8.9. Setting status of CoAP plugin

Chapter 8. Local Control 189

displays {"status": false}. Figure 8.10 shows the query setting status of the CoAP
plugin.

Figure 8.10. Query setting status of CoAP plugin

8.3.5 Bluetooth Protocol

1. Introduction to Bluetooth protocol

Chapter 7 introduces the protocol and architecture of Bluetooth. The Bluetooth protocol
defines message formats and process for completing specific functions, such as link control,
security services, service information exchange and data transmission. This section only
introduces the attribute protocol (ATT) of the Bluetooth protocol specification. Bluetooth
data exists in the form of attributes, and each attribute consists of four elements.

Attribute handle
Just as memory addresses are used to find contents in memory, attribute handles can also
help find the corresponding attribute. For example, the first attribute handle is 0x0001,
the second attribute handle is 0x0002, and so on, up to a maximum of 0xFFFF.

Attribute UUID
Each data represents specific property. For example, a smart light has two basic attributes,
one for setting the on/off status, and the other for reading the on/off status.

Attribute value
Attribute value is the information that each attribute carries, while the other three ele-
ments are to enable the peer to obtain the attribute value much easier. For example, for
a smart light, the attribute value for setting the on/off status can be set to “1” to turn on
the light, or to “0” to turn off the light; the attribute value for reading the on/off status
can be “1” for the “on” status or “0” for the “off” status.

190 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Attribute permissions
Each attribute has corresponding access restrictions for its own attribute values, such as
some attributes are readable, some are writable, and some are readable and writable.
The party that owns the data can control the attribute permissions of local data through
attribute permissions. For example, the switch attribute permission of the smart light can
be set as writable but not readable, and the attribute permission for reading the switch
status of the smart light can be set as read-only and not writable.

Table 8.2 lists the Bluetooth attributes for the basic functions of a smart light.

Table 8.2. Bluetooth attributes for basic functions of smart light

Attribute
handle

Attribute UUID
Attribute

value
Attribute permissions

0x0001 Set the on/off status 1/0 Writable but not readable

0x0002 Read the on/off status 1/0 Readable but not writable

The device that stores the data (i.e., attributes) is usually called the server, and the device
that receives data from other devices is called the client. For a smart light and a smartphone,
the smart light is server, and the smartphone is the client. The following are common
operations between a server and a client:

(1) The client sends data to the server.

Data is transmitted by writing data to the server. There are two types of write oper-
ations: one is write request, and the other is write command. The main difference
between the two is that the former requires a response (write response) from the
peer, while the latter does not. For a smart light, the command to turn on/off the light
sent by the smartphone is a write operation, and this is a write request which requires
the smart light to respond. Such response is not a simple ACK response. The result of
the action of turning on/off the light needs to be returned to the smartphone to inform
it of the current status of the smart light.

(2) The server sends data to the client.

The updated data is sent from the server to the client mainly in the form of server
indication or notification. Similar to write operations, the main difference between
indication and notification is that the former requires the other device to respond
(confirm) after receiving the data indication. For a smart light, if it is turned on/off
through a physical switch button, its status needs to be reported to the smartphone
through indications or notifications, and the smartphone will display the latest status.

Chapter 8. Local Control 191

(3) The client reads data from the server actively.

Generally, the client obtains values of corresponding attributes from the server through
read operation. In the case mentioned above where a smart light is turned on/off
through a physical switch button, except for waiting to be notified by the server, the
smartphone can also obtain the real-time status through read operations.

Then let’s consider which way is better to get the status of the smart light. Active reading
takes time whenever the smartphone initiates a read operation, while indication or notifica-
tion saves the time for repetitive data transmission. It seems that the latter option is faster
but if the smart light is not connected to the phone when sending the notification, its status
will not be updated. This can be fixed by updating the status as soon as the phone becomes
connected to the smart light; otherwise, it is recommended to use the read operation.

2. Creating a Bluetooth server using ESP-IDF component

Source code

For the source code of Bluetooth, please refer to esp-idf/examples/provisioning/
legacy/ble prov. For the example code of customised configuration, please refer to
esp-idf/examples/provisioning/legacy/custom config.

The following example uses the protocomm component to implement the smart light server,
and the customised configuration uses the custom-proto protocol. As mentioned earlier, to
implement the on/off control and status query of the smart light, two attributes need to be
defined. The code is as below:
1. static esp_err_t wifi_prov_config_set_light_handler(uint32_t session_id,

2. const uint8_t *inbuf,

3. ssize_t inlen,

4. uint8_t **outbuf,

5. ssize_t *outlen,

6. void *priv_data)

7. {

8. CustomConfigRequest *req;

9. CustomConfigResponse resp;

10. req = custom_config_request_unpack(NULL, inlen, inbuf);

11. if (!req) {

12. ESP_LOGE(TAG, "Unable to unpack config data");

13. return ESP_ERR_INVALID_ARG;

14. }

15. custom_config_response_init(&resp);

16. resp.status = CUSTOM_CONFIG_STATUS_ConfigFail;

17. if (req->open_light) {//Turn on the smart light

18. //Pull up GPIO level according to the status

19. ESP_LOGI(TAG, "Open the light");

192 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf/tree/master/examples/provisioning
https://github.com/espressif/esp-idf/tree/master/examples/provisioning
https://github.com/espressif/esp-idf/tree/master/examples/provisioning

20. } else {

21. //Pull down GPIO level according to the status

22. ESP_LOGI(TAG, "Close the light");

23. }

24.

25. //Set response status and smart light status according to the light’s execution result

26. resp.status = CUSTOM_CONFIG_STATUS_ConfigSuccess;

27. custom_config_request_free_unpacked(req, NULL);

28. resp.light_status = 1; //Respond according to the light status

29. *outlen = custom_config_response_get_packed_size(&resp);

30. if (*outlen <= 0) {

31. ESP_LOGE(TAG, "Invalid encoding for response");

32. return ESP_FAIL;

33. }

34. *outbuf = (uint8_t *) malloc(*outlen);

35. if (*outbuf == NULL) {

36. ESP_LOGE(TAG, "System out of memory");

37. return ESP_ERR_NO_MEM;

38. }

39.

40. custom_config_response_pack(&resp, *outbuf);

41. return ESP_OK;

42. }

43.

44. static int wifi_prov_config_get_light_handler(uint32_t session_id,

45. const uint8_t *inbuf,

46. ssize_t inlen,

47. uint8_t **outbuf,

48. ssize_t *outlen,

49. void *priv_data)

50. {

51. CustomConfigResponse resp;

52. custom_config_response_init(&resp);

53. resp.status = CUSTOM_CONFIG_STATUS_ConfigSuccess;

54. resp.light_status = 1; //Respond according to the light status

55. *outlen = custom_config_response_get_packed_size(&resp);

56. if (*outlen <= 0) {

57. ESP_LOGE(TAG, "Invalid encoding for response");

58. return ESP_FAIL;

59. }

60. *outbuf = (uint8_t *) malloc(*outlen);

61. if (*outbuf == NULL) {

62. ESP_LOGE(TAG, "System out of memory");

63. return ESP_ERR_NO_MEM;

64. }

65. custom_config_response_pack(&resp, *outbuf);

66. return ESP_OK;

Chapter 8. Local Control 193

67. }

68.

69. static esp_err_t app_prov_start_service(void)

70. {

71. //Create protocomm

72. g_prov->pc = protocomm_new();

73. if (g_prov->pc == NULL) {

74. ESP_LOGE(TAG, "Failed to create new protocomm instance");

75. return ESP_FAIL;

76. }

77.

78. //Attribute value

79. protocomm_ble_name_uuid_t nu_lookup_table[] = {

80. {"prov-session", 0x0001},

81. {"prov-config", 0x0002},

82. {"proto-ver", 0x0003},

83. {"set-light", 0x0004}, //Set the state of the smart light

84. {"get-light", 0x0005}, //Get the status of the smart light

85. };

86.

87. //Bluetooth configuration

88. protocomm_ble_config_t config = {

89. .service_uuid = {

90. /* LSB <---------------------------------------

91. * ---------------------------------------> MSB */

92. 0xb4, 0xdf, 0x5a, 0x1c, 0x3f, 0x6b, 0xf4, 0xbf,

93. 0xea, 0x4a, 0x82, 0x03, 0x04, 0x90, 0x1a, 0x02,

94. },

95. .nu_lookup_count=sizeof(nu_lookup_table)/sizeof(nu_lookup_table[0]),

96. .nu_lookup = nu_lookup_table

97. };

98.

99. uint8_t eth_mac[6];

100. esp_wifi_get_mac(WIFI_IF_STA, eth_mac);

101. snprintf(config.device_name,

102. sizeof(config.device_name),

103. "%s%02X%02X%02X",

104. ssid_prefix,

105. eth_mac[3],

106. eth_mac[4],

107. eth_mac[5]);

108.

109. //Release BT memory as only Bluetooth LE protocol stack is used.

110. esp_err_t err = esp_bt_controller_mem_release(ESP_BT_MODE_CLASSIC_BT);

111. if (err) {

112. ESP_LOGE(TAG, "bt_controller_mem_release failed %d", err);

113. if (err ! = ESP_ERR_INVALID_STATE) {

194 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

114. return err;

115. }

116. }

117. //Start protocomm Bluetooth LE protocol stack

118. if (protocomm_ble_start(g_prov->pc, &config) ! = ESP_OK) {

119. ESP_LOGE(TAG, "Failed to start BLE provisioning");

120. return ESP_FAIL;

121. }

122. //Set protocomm version verification endpoint for the protocol

123. protocomm_set_version(g_prov->pc, "proto-ver", "V0.1");

124. //Set protocomm security type for the endpoint

125. if (g_prov->security == 0) {

126. protocomm_set_security(g_prov->pc, "prov-session",

127. &protocomm_security0, NULL);

128. } else if (g_prov->security == 1) {

129. protocomm_set_security(g_prov->pc, "prov-session",

130. &protocomm_security1, g_prov->pop);

131. }

132. //Add an endpoint for Wi-Fi configuration

133. if(protocomm_add_endpoint(g_prov->pc, "prov-config",

134. wifi_prov_config_data_handler,

135. (void *) &wifi_prov_handlers) ! =ESP_OK){

136. ESP_LOGE(TAG, "Failed to set provisioning endpoint");

137. protocomm_ble_stop(g_prov->pc);

138. return ESP_FAIL;

139. }

140. //Add an endpoint for setting smart light status

141. if (protocomm_add_endpoint(g_prov->pc, "set-light",

142. wifi_prov_config_set_light_handler,

143. NULL) ! = ESP_OK) {

144. ESP_LOGE(TAG, "Failed to set set-light endpoint");

145. protocomm_ble_stop(g_prov->pc);

146. return ESP_FAIL;

147. }

148. //Add an endpoint for getting smart light status

149. if (protocomm_add_endpoint(g_prov->pc, "get-light",

150. wifi_prov_config_get_light_handler,

151. NULL) ! = ESP_OK) {

152. ESP_LOGE(TAG, "Failed to set get-light endpoint");

153. protocomm_ble_stop(g_prov->pc);

154. return ESP_FAIL;

155. }

156. ESP_LOGI(TAG, "Provisioning started with BLE devname : ’%s’",

157. config.device_name);

158. return ESP_OK;

159.}

Chapter 8. Local Control 195

The above example provides two attributes: set-light and get-light, and the cor-
responding attribute handles are 0x0004 and 0x0005, respectively. When the smartphone
sends a command to set the light, the wifi_prov_config_set_light_handler() call-
back function will be executed to handle the on/off action and inform the smartphone of
the current status of the smart light. When the smartphone sends a read command, the
wifi_prov_config_get_light_handler() callback function will be executed to in-
form the smartphone of the current status of the smart light. You can use the Bluetooth
debugging assistant of the smartphone to scan the devices connected to Bluetooth, and un-
derstand the function of each service more intuitively through the services provided by the
Bluetooth device.

The above example implements local control via Bluetooth based on the protocomm com-
ponent, and the data structure is relatively complex. If you are an experienced developer,
you can try to use the ideas of the above example to implement local control. In addition,
this book provides the most basic server example based on Bluetooth for beginners. You
can refer to the example code in subsection 8.5.3 to understand the process of local control
using Bluetooth.

8.3.6 Summary of Data Communication Protocols

Both UDP and TCP protocols in the transport layer can directly serve as communication
protocols for application data. Table 8.3 lists the differences between UDP and TCP.

Table 8.3. Differences between TCP and UDP

Comparison TCP UDP

Reliability
Reliable transmission;
supports retransmission, flow con-
trol and congestion control

Unreliable transmission;
does not support retransmission,
flow control or congestion control

Connection

Connection-oriented, with three
handshakes for connection estab-
lishment and four handshakes for
disconnection; long connection

No connection;
direct data transmission;
short connection

Connection
object

One-to-one connection
One-to-one unicast,
one-to-all broadcast,
and one-to-many multicast

Header
overhead

� 20 B 8 B

196 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Continuation of Table 8.3

Comparison TCP UDP

Transmission
rate

Depends on network environment;
retransmission occurs in case of
packet loss, lowering transmission
rate.

Fast, independent of network envi-
ronment, and only responsible for
transmitting data to the network

Application
scenario

Suitable for reliable transmission,
e.g., file transfer.

Suitable for real-time transmission,
e.g., VoIP telephony, video tele-
phony, streaming media, etc.

For data communication of local control, TCP can be selected from the perspective of the
transport layer as it can ensure the data is accurate. When using UDP, the smartphone app
will send the command to turn on the light. The command may be discarded due to network
environment issues, and ESP32-C3 may not receive the command. While for TCP, even if
the data packet is discarded, the underlying layer of the smartphone app will resend the
command.

However, a drawback to sending data using a pure transport layer protocol is that you need
to develop business logic of upper-layer applications. Therefore, this section also introduces
the application protocols HTTP and CoAP based on TCP and UDP.

Both HTTP and CoAP are network transmission protocols based on the REST model, which
are used to send requests and respond to requests. The only difference is that one is based
on TCP and the other is based on UDP, and each inherits the relevant characteristics of the
transport layer protocol. Table 8.4 lists the differences between HTTP and CoAP.

Table 8.4. Differences between HTTP and CoAP

Comparison HTTP CoAP

Transport
layer

TCP UDP

Header
overhead

May contain a large amount of mes-
sage header data with high over-
head

Packet headers are binary com-
pressed for low overhead

Power
consumption

Long connection,
high power consumption

Short connection,
low power consumption

Resource
discovery

Not support Support

Chapter 8. Local Control 197

Continuation of Table 8.4

Comparison HTTP CoAP

Request
method

Generally triggered by the client;
no active trigger by the server.

Both the client and the server can
actively trigger requests.

Application
scenario

Suitable for devices with good per-
formance and large memory

Suitable for devices with poor per-
formance and small memory

Compared to HTTP, CoAP is more suitable for IoT devices with limited resources. For the
device has more resources and better performance, HTTP has more functions than CoAP.

After comparing the communication protocols within the TCP/IP protocol family, we will
compare these protocols with the Bluetooth protocol. The most intuitive difference between
them is that Bluetooth is a point-to-point protocol, while the TCP/IP is an end-to-end proto-
col that may go through routers. Therefore, in terms of response speed, although Bluetooth
and Wi-Fi are both wireless transmission technologies on the 2.4 GHz channel, Bluetooth is
faster than Wi-Fi in data communication between smartphones and ESP32-C3. The packet
size of Bluetooth is smaller than that of application data using TCP/IP protocol stack, and
the power consumption of Bluetooth is naturally lower than that of Wi-Fi. The Bluetooth
protocol supports resource discovery and does not require local discovery because Bluetooth
is a point-to-point connection, which is very suitable for local control. However, since most
IoT products currently need to connect to the cloud, Wi-Fi functionality is essential. Many
IoT products can use only Wi-Fi or only Bluetooth for network configuration. If the IoT
product does not need to connect to the cloud, Bluetooth can be used for local control only.
If the IoT product needs to connect to the cloud, it needs to use Wi-Fi for cloud connection
and local control.

8.4 Guarantee of Data Security
As we all know, TCP and UDP, as well as the application protocols HTTP and CoAP that
run on top of them, transmit data in plaintext. This can lead to data being intercepted or
tampered with during transmission. If sensitive information such as passwords or account
numbers is included in the data, irreparable losses may occur. Therefore, it is necessary
to encrypt the data transmitted in plaintext. For data transmitted via Bluetooth, since the
Bluetooth is a point-to-point protocol, the data will not leak onto the network and the prob-
ability of it being intercepted is very low. In addition, the Bluetooth protocol itself encrypts
user data. Therefore, this section mainly discusses the data encryption of TCP/IP.

Encryption is used to ensure confidentiality and integrity of transmitted data. Common
encryption systems usually encode data before transmission. For example, in previous wars,

198 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

telegrams were encoded and both the sender and receiver had the same codebook. The
receiver used the numbers or letters in the codebook to replace the words or sentences in
the telegram. Even if the telegram content was intercepted by a third party, the third party
could not decipher the true content of the telegram in a short time. However, this method
has a flaw that the telegram content is still susceptible to being deciphered, which is just a
matter of time. In addition, to prevent the telegram from being deciphered, the receiver and
sender need to periodically change the codebook. This may also lead to the codebook being
leaked and the telegram content being deciphered.

The telegram example above is a common encryption algorithm—a usage scenario of sym-
metric encryption. In the symmetric encryption algorithm, the same algorithm is used for
encryption and decryption, and their keys are also the same. Symmetric encryption has the
advantages of open algorithm, small computational complexity, fast encryption speed, and
high encryption efficiency. However, before data transmission, the sender and receiver must
agree on the key, and in order to ensure that the data is not deciphered, both parties must
also periodically update the key, which makes key management a burden for both parties.
Common symmetric encryption algorithms include AES, DES, and RC4. Figure 8.11 shows
the process of symmetric encryption.

Figure 8.11. Process of symmetric encryption

In this section, we will introduce the algorithm that is opposite to symmetric encryption,
asymmetric encryption. Both parties in asymmetric encryption have a pair of public key
and private key. Data is encrypted using the public key, and decrypted using the private
key. Because different keys are used for encryption and decryption, this encryption algo-
rithm is called asymmetric encryption. Compared with symmetric encryption, asymmetric
encryption is more secure. Because asymmetric encryption is more complex than symmetric
encryption, it takes longer time to decrypt, and it is difficult for third parties to directly de-
cipher the data. Because the asymmetric encryption algorithm has high complexity and the
private key used for decryption is not transmitted on the network, which can only be ob-
tained by the recipient, this greatly improves data security. Common asymmetric encryption
algorithms include RSA, Diffie-Hellman, DSA, etc.

The advantage of asymmetric encryption is its security. User A can keep the private key and
transmit the public key to user B through the network. Even if user C obtains the public

Chapter 8. Local Control 199

key, user C cannot decipher the data because user C does not have user A’s private key. In
this way, user A and user B can confidently transmit their respective public keys through the
network. Remember, the public key is used for encryption, and the private key is used for
decryption. Figure 8.12 shows the process of asymmetric encryption.

Figure 8.12. Process of asymmetric encryption

Asymmetric encryption seems very secure, but have you ever thought about this question:
what if user C replaces all the public keys sent to user A and user B with its own corre-
sponding private key’s public key? User A does not know whether this public key belongs
to user B, so when user A sends data, it will use user C’s public key for encryption. At this
time, user C can steal the ciphertext data and decrypt it using the corresponding private key.
Therefore, it is crucial to ensure the legitimacy of the public key. In reality, the legitimacy of
the public key can be ensured through a Certificate Authority (CA). CA also works based on
asymmetric encryption algorithms. With CA, user B will first give its public key and some
other information to CA. CA encrypts this data using its private key, and the encrypted data
is called user B’s digital certificate. The public key transmitted by user B to user A is the
digital certificate encrypted by the CA. After receiving the digital certificate, user A will use
the digital certificate published by CA (which contains CA’s public key) to decrypt user B’s
digital certificate and obtain user B’s public key.

8.4.1 Introduction to Transport Layer Security (TLS)

TLS is a protocol based on TCP and serves the application layer. Its predecessor is the Secure
Socket Layer (SSL) protocol. Through the TLS protocol, the packets of the application layer
can be encrypted and delivered to the TCP layer for transmission.

1. What does TLS do?

The TLS protocol mainly solves the following three network problems:

• Guarantee data confidentiality. All data is transmitted encrypted to ensure protection
against unauthorised access or data theft by third parties.

• Guarantee data integrity. All data is protected by a verification mechanism, so any tam-
pering will be immediately detected by both parties involved in the communication.

200 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

• Guarantee the authentication and identity verification of both parties involved in data
communication. Certificate authentication can be employed by both parties in the com-
munication to ensure the legitimacy of their identities.

2. How does TLS work?

The TLS protocol can be divided into two parts. The record layer uses the key negotiated
by the client and the server to encrypt and transmit data. The handshake layer negotiates
between the client and the server to determine a set of key strings for data transmission
encryption. The TLS protocol model is shown in Figure 8.13, where the handshake layer
includes four sub-protocols: handshake protocol, change cipher spec protocol, application
data protocol, and alert protocol.

Figure 8.13. TLS protocol model

Record layer is responsible for all the underlying data exchanged at the transport layer
and can encrypt data. Each TLS record begins with a short header, which includes the
Content Type (or subprotocol), Protocol Version, and Length fields. The underlying data is
segmented (or merged), compressed, added with a message authentication code, encrypted,
and then converted into the data part of the TLS record. Figure 8.14 shows the structure of
a TLS record packet.

Handshake layer has four sub-protocols, which are introduced in the list below.

Handshake protocol
Responsible for generating the shared key required for the communication process and
performing identity authentication. Note that the handshake protocol does not use ci-
pher suites directly. Instead, it relies on public key cryptography or Diffie-Hellman key
exchange to establish secure communication and prevent data from being eavesdropped
or intercepted.

Change cipher spec protocol
Responsible for the synchronisation of password switching, and is used after the hand-
shake protocol. During the handshake process, the ‘null’ cipher suite, which means no

Chapter 8. Local Control 201

Figure 8.14. TLS record packet

encryption, is used. After the handshake is completed, the negotiated cipher suite is used
for securing the subsequent data transfer.

Application data protocol
Used by the communicating parties for data transmission. The transmission process is car-
ried out through the application data protocol and TLS record protocol of the handshake
layer.

Alert protocol
Used to notify the other party when an error occurs, such as an exception during the hand-
shake process, a message authentication code error, or data that cannot be decompressed.

The algorithm used during TLS encryption is introduced in the list below.

• Hash function verifies data integrity. Common encryption algorithms include MD5,
SHA, etc.

• Symmetric encryption algorithm encrypts the application data. Common encryption
algorithms include AES, RC4, DES, etc.

• Asymmetric encryption algorithm for identity authentication and key agreement.
Common encryption algorithms include RSA, DH, etc.

When using TLS, the client and server use asymmetric encryption algorithm to authenticate
identity and negotiate the key of symmetric encryption algorithm, and then use symmet-
ric encrypted data and data digest for data communication. Figure 8.15 shows the TLS
handshake process.

202 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 8.15. TLS handshake process

(1) Client Hello. The client sends the highest version of the supported TLS protocol and all
the cipher suites it supports, which are used to send information such as the random
number for generating the session key to the server.

(2) Server Hello. After receiving the Client Hello message sent by the client, the server
selects the TLS protocol version and a cipher suite according to the protocol version
and cipher suite sent by the client, and returns them to the client.

(3) (Optional) Send Certificate. The server sends its own server-side certificate to the
client, which is used by the client to verify the legitimacy of the server.

(4) (Optional) Request Certificate. When the server needs to verify the client’s certificate,
the server will send a certificate request message to the client if mutual authentication
is selected.

(5) Server Hello Done. The server informs the client that the server has sent all the hand-
shake messages, and the server will wait for the client to send messages.

(6) (Optional) Response Certificate. If mutual authentication is selected, the client will
send its certificate to the server. Then the server will verify the identity of the client.

(7) Client Key Exchange. The client uses the server’s public key to encrypt the client’s
public key and key seed before sending them to the server.

Chapter 8. Local Control 203

(8) (Optional) Certificate Verify. If mutual authentication is selected, the client uses the
local private key to generate a digital signature and sends it to the server for authenti-
cation through the received client public key.

(9) Create Secret Key. The communicating parties generate the communication key based
on information such as the key seed.

(10) Change Cipher Spec. The client notifies the server that the communication method
has been switched to encrypted mode.

(11) Finished. The client is ready for encrypted communication.

(12) Change Cipher Spec. The server notifies the client that the communication method
has been switched to the encrypted mode.

(13) Finished. Prepare for encrypted communication on the server side.

(14) Encrypted/Decrypted Data. Both parties use the client key to encrypt/decrypt the
communication content through a symmetric encryption algorithm.

(15) Closed Connection. After the communication is over, either party sends a message to
disconnect the TLS connection.

3. Creating an HTTP+TLS server with ESP-IDF

HTTPS, namely HTTP over SSL, encrypts HTTP data through the SSL or TLS protocol. Com-
pared with HTTP, HTTPS can prevent data from being stolen or changed during transmis-
sion, thus ensuring data integrity. Section 8.3.2 introduces how to use ESP-IDF to create an
HTTP server. In fact, creating an HTTPS server is similar. Call httpd_ssl_start() to
start the HTTP+TLS service, and call httpd_register_uri_handler() to register the
corresponding callback function.

Source code

For the source code of functions httpd ssl start() and httpd register uri hand

ler(), please refer to book-esp32c3-iot-projects/test case/https server.

1. static esperr_t root_get_handler(httpd_req_t *req)

2. {

3. httpd_resp_set_type(req, "text/html");

4. httpd_resp_send(req, "<h1>Hello Secure World! </h1>", HTTPD_RESP_USE_STRLEN);

5. return ESP_OK;

6. }

7.

8. static const httpd_uri_t root = {

9. .uri = "/",

10. .method = HTTP_GET,

204 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/https_server

11. .handler = root_get_handler

12. };

13.

14. esp_err_t esp_create_https_server(void)

15. {

16. httpd_handle_t server = NULL;

17. ESP_LOGI(TAG, "Starting server");

18. httpd_ssl_config_t conf = HTTPD_SSL_CONFIG_DEFAULT();

19. //Configure CA certificate and private key for the server
20. extern const unsigned char cacert_pem_start[] asm("_binary_cacert_pem_start");

21. extern const unsigned char cacert_pem_end[] asm("_binary_cacert_pem_end");

22. conf.cacert_pem = cacert_pem_start;

23. conf.cacert_len = cacert_pem_end - cacert_pem_start;
24. extern const unsigned char prvtkey_pem_start[] asm("_binary_prvtkey_pem_start");

25. extern const unsigned char prvtkey_pem_end[] asm("_binary_prvtkey_pem_end");

26. conf.prvtkey_pem = prvtkey_pem_start;

27. conf.prvtkey_len = prvtkey_pem_end - prvtkey_pem_start;

28. //Start the HTTP+TLS server

29. esp_err_t ret = httpd_ssl_start(&server, &conf);

30. if (ESP_OK ! = ret) {

31. ESP_LOGI(TAG, "Error starting server!");

32. return ESP_FAIL;

33. }

34. //Set URI callback function

35. ESP_LOGI(TAG, "Registering URI handlers");

36. httpd_register_uri_handler(server, &root);

37. return ESP_OK;

38. }

The above code provides an example of how to create an HTTPS server. Before using this
code, please manually create a CA certificate and a private key in the main directory using
the following command:

$ openssl req -newkey rsa:2048 -nodes -keyout prvtkey.pem -x509 -days 3650 -out
cacert.pem -subj "/CN=ESP32 HTTPS server example"

Then modify the MakeLists.txt file to compile the certificate into the code.
1. idf_component_register(SRCS "station_example_main.c"

2. INCLUDE_DIRS "."

3. EMBED_TXTFILES "cacert.pem"

4. "prvtkey.pem")

In addition, you also need to go to idf.py menuconfig → Component config →
ESP HTTPS server, and configure CONFIG_ESP_HTTPS_SERVER_ENABLE.

Enter https://[your device IP]:443/ in the Chrome browser. The CA certificate on
the server side is not issued by a certification authority, thus it is not trusted. Therefore, you
will see the screen shown in Figure 8.16.

Chapter 8. Local Control 205

Figure 8.16. Interface of untrusted HTTPS connection

Users need to click the “Advanced” button to allow this untrusted connection. Figure 8.17
shows the interface of a successful HTTPS connection.

Figure 8.17. Interface of successful HTTPS connection

Should you encounter a “Header fields are too long for server to interpret” message, just go
to idf.py menuconfig → Component config → HTTP Server → Max HTTP

Request Header Length, and increase HTTPD_MAX_REQ_HDR_LEN. Figure 8.18 shows
the interface where the HTTPS connection fails.

Figure 8.18. Interface of HTTPS connection failure

8.4.2 Introduction to Datagram Transport Layer Security (DTLS)

DTLS is a UDP-based protocol that serves the application layer. TLS protocol cannot guaran-
tee the security of data transmitted by UDP. Therefore, the DTLS protocol has been extended
on the existing TLS protocol architecture to support UDP, and becomes a version of TLS pro-
tocol that supports data packet transmission. DTLS 1.0 is based on TLS 1.1, and DTLS 1.2 is
based on TLS 1.2. The encryption algorithm, certificate, and encryption process of the DTLS

206 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

protocol are basically the same as those of the TLS protocol, thus will not be described in
this section.

1. Differences Between DTLS and TLS

The working principle of the DTLS protocol is basically the same as that of the TLS protocol,
except for the following differences:

• In the handshake stage, DTLS protocol has added the Cookie mechanism. The DTLS
protocol has added a Cookie mechanism in version 1.0, which is used by the server to
verify the client, and can avoid DoS attacks. When the client sends the Client Hello
message to the server, the server does not directly reply to the Server Hello message to
carry out the handshake process. Instead, the server replies the Hello Verify Request
message, which carries the Cookie value, to the client. When the client receives the
message, it will write the Cookie value into the Client Hello message and resend it to the
server. After receiving it, the server checks the local Cookie list to determine whether a
handshake is required.

• DLTS supports the retransmission mechanism. Since the UDP protocol itself does not
support retransmission like the TCP protocol, the DTLS protocol introduces a retrans-
mission mechanism. Taking the above Client Hello message as an example, after the
client sends the Client Hello message, the client will start a timer to receive the Hello
Verify Request message replied by the server; if the server does not reply within a certain
period of time, the client will resend the Client Hello message. Similarly, once a mes-
sage is sent, the server will activate a timer to monitor for timeouts and determine if the
message needs to be resent.

• DLTS supports orderly reception. UDP does not guarantee the order of delivered packets.
In contrast, DTLS protocol has added a message_seq field in the handshake message.
The receiver will provide a receiving buffer to receive out-of-order messages (similarly
to TCP), and process the messages in order according to the message_seq field.

• DLTS supports packet size limitation. UDP is a packet-oriented protocol, and TCP is a
stream-oriented protocol. TCP supports packet fragmentation and reassembly. However,
when a UDP message exceeds the maximum transmission unit (MTU) of the link layer, it
may be forcibly fragmented at the IP layer. The receiver then needs to process the frag-
mented packet based on the IP header and reassemble the original data. If one packet is
lost, the entire UDP message will be invalid. Therefore, in DTLS protocol, the handshake
messages are segmented on top of UDP. This is done by adding the fragment_offset
field and fragment_length field to the handshake message, which represent the offset
of this message relative to the beginning of the message and the length of this message,
respectively.

Chapter 8. Local Control 207

2. Creating a CoAP+DTLS server with ESP-IDF

The following example introduces how to create a CoAP+DTLS server. This example is ac-
tually the same as the CoAP example introduced in Section 8.3.4, except that two functions
are added to support the DTLS protocol. The function coap_context_set_psk() is used
to set the PSK encryption key in the DTLS protocol, and can also use certificate (PKI) for the
DTLS protocol handshake. The coap_new_endpoint(ctx, &serv_addr, COAP_PRO

TO_DTLS) function indicates that the node supports the DTLS protocol.

Source code

For the complete example code of coap context set psk(), please refer to book-
esp32c3-iot-projects/test case/coap. For instructions on how to use PKI,
please see esp-idf/examples/protocols/coap server.

1. static char psk_key[] = "esp32c3_key";

2. static void esp_create_coaps_server(void)

3. {

4. coap_context_t *ctx = NULL;

5. coap_address_t serv_addr;

6. coap_resource_t *resource = NULL;

7. while (1) {

8. coap_endpoint_t *ep = NULL;

9. unsigned wait_ms;

10.

11. //Create a CoAP server socket

12. coap_address_init(&serv_addr);

13. serv_addr.addr.sin6.sin6_family = AF_INET6;

14. serv_addr.addr.sin6.sin6_port = htons(COAP_DEFAULT_PORT);

15.

16. //Create CoAP ctx

17. ctx = coap_new_context(NULL);

18. if (!ctx) {

19. ESP_LOGE(TAG, "coap_new_context() failed");

20. continue;

21. }

22.

23. //Add PSK encryption key

24. coap_context_set_psk(ctx, "CoAP",

25. (const uint8_t *)psk_key,

26. sizeof(psk_key) - 1);

27.

28. //Set CoAP node

29. ep = coap_new_endpoint(ctx, &serv_addr, COAP_PROTO_UDP);

30. if (!ep) {

31. ESP_LOGE(TAG, "udp: coap_new_endpoint() failed");

32. goto clean_up;

208 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/coap
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/coap
https://github.com/espressif/esp-idf/tree/master/examples/protocols/coap_server

33. }

34.

35. //Add DTLS node and port

36. if (coap_dtls_is_supported()) {

37. serv_addr.addr.sin6.sin6_port = htons(COAPS_DEFAULT_PORT);

38. ep = coap_new_endpoint(ctx, &serv_addr, COAP_PROTO_DTLS);

39. if (!ep) {

40. ESP_LOGE(TAG, "dtls: coap_new_endpoint() failed");

41. goto clean_up;

42. } else {

43. ESP_LOGI(TAG, "MbedTLS (D)TLS Server Mode not configured");

44. }

45. }

46.

47. //Set CoAP resource URI

48. resource = coap_resource_init(coap_make_str_const("light"), 0);

49. if (!resource) {

50. ESP_LOGE(TAG, "coap_resource_init() failed");

51. goto clean_up;

52. }

53.

54. //Register callback functions for GET and PUT method corresponding to CoAP resource URI

55. coap_register_handler(resource, COAP_REQUEST_GET, esp_coap_get);

56. coap_register_handler(resource, COAP_REQUEST_PUT, esp_coap_put);

57.

58. //Set CoAP GET resource visible

59. coap_resource_set_get_observable(resource, 1);

60.

61. //Add resource to CoAP ctx

62. coap_add_resource(ctx, resource);

63. wait_ms = COAP_RESOURCE_CHECK_TIME * 1000;

64. while (1) {

65. //Wait to receive CoAP data

66. int result = coap_run_once(ctx, wait_ms);

67. if (result < 0) {

68. break;

69. } else if (result && (unsigned)result < wait_ms) {

70. //Decrease waiting time

71. wait_ms -= result;

72. } else {

73. //Reset waiting time

74. wait_ms = COAP_RESOURCE_CHECK_TIME * 1000;

75. }

76. }

77. }

78. clean_up:

79. coap_free_context(ctx);

Chapter 8. Local Control 209

80. coap_cleanup();

81. }

8.5 Practice: Local Control in Smart Light Project
The local control component (esp_local_ctrl) of ESP-IDF enables you to control Espres-
sif chips via Wi-Fi+HTTPS or Bluetooth LE easily. With this component, you can access
application-defined properties, which can be read from or written to through a set of con-
figurable handlers. This section mainly introduces the local control module based on Wi-Fi.
Taking the smart light as an example, the local control module can be configured as follows:

• Configure the local device to discover mDNS protocol.
• Configure the local HTTPS server and certificate for data communication.
• Configure the smart lights.

The previous sections have introduced the control of ESP32-C3 via Bluetooth LE. When
using Bluetooth LE, the TCP/IP protocol stack is not involved, and local device discovery is
not necessary. Bluetooth has its own resource discovery service.

8.5.1 Creating a Wi-Fi-based Local Control Server

The following sample code implements the Wi-Fi-based local control server. The local con-
trol is based on HTTP for data communication, and the data is encrypted using the TLS
protocol. Additionally, the sample adds the mDNS module for device discovery.

Source code

For the complete example code, please refer to book-esp32c3-iot-projects/test
case/local control.

1. #define PROPERTY_NAME_STATUS "status"

2. static char light_status[64] = "{\"status\": true}";

3.

4. //Property type definition, used with scripts

5. enum property_types {

6. PROP_TYPE_TIMESTAMP = 0,

7. PROP_TYPE_INT32,

8. PROP_TYPE_BOOLEAN,

9. PROP_TYPE_STRING,

10. };

11.

12. //Get attribute value

13. esp_err_t get_property_values(size_t props_count,

14. const esp_local_ctrl_prop_t props[],

15. esp_local_ctrl_prop_val_t prop_values[],

16. void *usr_ctx)

17. {

210 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/local_control
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/local_control

18. int i = 0;

19. for (i = 0; i < props_count; i ++) {

20. ESP_LOGI(TAG, "Reading property : %s", props[i].name);

21. if (!strncmp(PROPERTY_NAME_STATUS,

22. props[i].name,

23. strlen(props[i].name))) {

24. prop_values[i].size = strlen(light_status);

25. prop_values[i].data = &light_status;//prop_values[i].data is

26. //just a pointer, and cannot be assigned.

27. break;

28. }

29. }

30. if (i == props_count) {

31. ESP_LOGE(TAG, "Not found property %s", props[i].name);

32. return ESP_FAIL;

33. }

34. return ESP_OK;

35. }

36.

37. //Set property value

38. esp_err_t set_property_values(size_t props_count,

39. const esp_local_ctrl_prop_t props[],

40. const esp_local_ctrl_prop_val_t prop_values[],

41. void *usr_ctx)

42. {

43. int i = 0;

44. for (i = 0; i < props_count; i ++) {

45. ESP_LOGI(TAG, "Setting property : %s", props[i].name);

46. if (!strncmp(PROPERTY_NAME_STATUS,

47. props[i].name,

48. strlen(props[i].name))) {

49. memset(light_status, 0, sizeof(light_status));

50. strncpy(light_status,

51. (const char *)prop_values[i].data,

52. prop_values[i].size);

53. if (strstr(light_status, "true")) {

54. app_driver_set_state(true); //Turn on the smart light

55. } else {

56. app_driver_set_state(false); //Turn off the smart light

57. }

58. break;

59. }

60. }

61. if (i == props_count) {

62. ESP_LOGE(TAG, "Not found property %s", props[i].name);

63. return ESP_FAIL;

64. }

Chapter 8. Local Control 211

65. return ESP_OK;

66. }

67. #define SERVICE_NAME "my_esp_ctrl_device"

68. void esp_local_ctrl_service_start(void)

69. {

70. //Initialise the HTTPS server-side configuration

71. httpd_ssl_config_t https_conf = HTTPD_SSL_CONFIG_DEFAULT();

72. //Load the server certificate
73. extern const unsigned char cacert_pem_start[] asm("_binary_cacert_pem_ start");

74. extern const unsigned char cacert_pem_end[] asm("_binary_cacert_pem_end");

75. https_conf.cacert_pem = cacert_pem_start;

76. https_conf.cacert_len = cacert_pem_end - cacert_pem_start;

77. //Load server-side private key
78. extern const unsigned char prvtkey_pem_start[] asm("_binary_prvtkey_pem_ start");

79. extern const unsigned char prvtkey_pem_end[] asm("_binary_prvtkey_pem_end");

80. https_conf.prvtkey_pem = prvtkey_pem_start;

81. https_conf.prvtkey_len = prvtkey_pem_end - prvtkey_pem_start;

82. esp_local_ctrl_config_t config = {

83. .transport = ESP_LOCAL_CTRL_TRANSPORT_HTTPD,

84. .transport_config = {

85. .httpd = &https_conf

86. },

87. .proto_sec = {

88. .version = PROTOCOM_SEC0,

89. .custom_handle = NULL,

90. .pop = NULL,

91. },

92. .handlers = {

93.

94. //User-defined processing function

95. .get_prop_values = get_property_values,

96. .set_prop_values = set_property_values,

97. .usr_ctx = NULL,

98. .usr_ctx_free_fn = NULL

99. },

100.

101. //Set the maximum number of attributes

102. .max_properties = 10

103. };

104.

105. //Initialise local discovery

106. mdns_init();

107. mdns_hostname_set(SERVICE_NAME);

108.

109. //Start the local control service

110. ESP_ERROR_CHECK(esp_local_ctrl_start(&config));
111. ESP_LOGI(TAG, "esp_local_ctrl service started with name : %s", SERVICE_NAME);

212 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

112. esp_local_ctrl_prop_t status = {

113. .name = PROPERTY_NAME_STATUS,

114. .type = PROP_TYPE_STRING,

115. .size = 0,

116. .flags = 0,

117. .ctx = NULL,

118. .ctx_free_fn = NULL

119. };

120. //Add attribute value

121. ESP_ERROR_CHECK(esp_local_ctrl_add_property(&status));

122.}

The above sample code implements the discovery of a device (domain name: my_esp_ctrl
_device.local) through the local discovery protocol (mDNS), establishes an HTTPS local
control connection, and allows the client to set and query attribute values via a registered
endpoint.

Users can enable the transmission security protection for local control via the following
options:

• PROTOCOM SEC0: specifies the end-to-end encryption algorithm used.
• PROTOCOM SEC1: specifies that data is exchanged as plain text.
• PROTOCOM SEC CUSTOM: customises security requirements.

Each attribute must have a unique name (a string), type (e.g., int, bool, or string), flag (e.g.,
read-only, or readable and writable), and size. If the property value is expected to be of
variable length (e.g., if the property value is a string or byte stream), the size should be
kept at 0. For fixed-length property value data types, such as int, float, etc., setting the size
field to the correct value helps esp_local_ctrl perform internal checks on parameters
received via write requests.

You can process it by matching props[i].name with the corresponding property name,
and further checking the flag and type of the property to determine if the property satis-
fies the corresponding flag and type requirements.

The default endpoints are shown in Table 8.5.

Table 8.5. Default endpoints

Endpoint name
(BLE + GATT Server)

URI (HTTPS Server + mDNS) Description

esp local ctrl/version
https://my esp ctrl device.
local/esp local ctrl/version

For retrieving version strings

esp local ctrl/control
https://my esp ctrl device.
local/esp local ctrl/control

For sending/receiving
control messages

Chapter 8. Local Control 213

https://my_esp_ctrl_device.local/esp_local_ctrl/version
https://my_esp_ctrl_device.local/esp_local_ctrl/version
https://my_esp_ctrl_device.local/esp_local_ctrl/control
https://my_esp_ctrl_device.local/esp_local_ctrl/control

8.5.2 Verifying Local Control Functionality using Scripts

After introducing how to create a local control module, this section will further introduce
how to use scripts for verification. Here, we use the official example esp_local_ctrl as
an example for verification.

1. Create a certificate for TLS handshake between the client and the server.

a. Generate a rootCA that will be used to sign the server-side certificate, and the client
will use it to verify the server-side certificate during the SSL handshake. A passphrase
needs to be set to encrypt the generated rootkey.pem.

$ openssl req -new -x509 -subj "/CN=root" -days 3650 -sha256 -out rootCA.pem
-keyout rootkey.pem

b. Generate a certificate signing request and its private key prvtkey.pem for the server.

$ openssl req -newkey rsa:2048 -nodes -keyout prvtkey.pem -days 3650 -out
server.csr -subj "/CN=my esp ctrl device.local"

c. Use the previously generated rootCA to process the server-side certificate signing re-
quest and generate the signing certificate cacert.pem. The passphrase set earlier for
the encrypted rootkey.pem must be entered in this step.

$ openssl x509 -req -in server.csr -CA rootCA.pem -CAkey rootkey.pem
-CAcreateserial -out cacert.pem -days 500 -sha256

Among the generated certificates, cacert.pem and prvtkey.pem are compiled into
the server, and rootkey.pem is suitable for client-side scripts for server-side verifica-
tion. The directory of the certificate can be set in the script esp_local_ctrl.py.
1. def get_transport(sel_transport, service_name, check_hostname):
2. ...
3. example_path = os.environ[’IDF_PATH’] + ’/examples/protocols/esp_local_ctrl’
4. cert_path = example_path + ’/main/certs/rootCA.pem’
5. ...

2. Use the following command to connect to the local control server via script. If sec_ver
is 0, it means that PROTOCOM_SEC0 is set on the server.

$ python esp local ctrl.py --sec ver 0

The script will automatically get the property value, i.e.:

Connecting to my_esp_ctrl_device.local

==== Starting Session ====

==== Session Established ====

==== Available Properties ====

S.N. Name Type Flags Value

[1] status STRING {"status": true}

214 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

3. According to the script prompt, enter the attribute number “1”, and set the attribute
value to {"status": false}. Then the script will automatically start querying and
find that the property value has been changed.

Select properties to set (0 to re-read, ’q’ to quit) : 1

Enter value to set for property (status) : {"status": false}

==== Available Properties ====

S.N. Name Type Flags Value

[1] status STRING {"status": false}

Select properties to set (0 to re-read, ’q’ to quit) :

8.5.3 Creating a Bluetooth-based Local Control Server

The following sample code creates a Bluetooth-based local control server, which can be
used to transmit data. You can refer to the gatt_server sample. The following example
implements a Bluetooth server. You can compile and flash this example, then use a Blue-
tooth debugging tool on your smartphone to scan and connect to a Bluetooth device named
ESP32C3-LIGHT. Once connected, you can access the Bluetooth services provided by the
device.

Source code

For the complete code of the gatt server example, please refer to book-esp32c3-
iot-projects/test case/gatt server.

This example provides two Bluetooth services: one for getting the device status (UUID: FF01)
and another for setting the device status (UUID: EE01), as shown in Figure 8.19.

The running log is as follows.
I (387) GATTS_DEMO: NVS Flash initialization

I (387) GATTS_DEMO: Application driver initialization

I (397) gpio: GPIO[9]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 1|

Pulldown: 0| Intr:0

W (437) BTDM_INIT: esp_bt_controller_mem_release not implemented, return OK

I (437) BTDM_INIT: BT controller compile version [501d88d]

I (437) coexist: coexist rom version 9387209

I (437) phy_init: phy_version 500,985899c,Apr 19 2021,16:05:08

I (617) system_api: Base MAC address is not set

I (617) system_api: read default base MAC address from EFUSE

I (617) BTDM_INIT: Bluetooth MAC: 68:ab:bc:a7:d8:d5

I (637) GATTS_DEMO: REGISTER_APP_EVT, status 0, app_id 0

I (647) GATTS_DEMO: CREATE_SERVICE_EVT, status 0, service_handle 40

I (647) GATTS_DEMO: SERVICE_START_EVT, status 0, service_handle 40

I (647) GATTS_DEMO: ADD_CHAR_EVT, status 0, attr_handle 42, service_handle 40

I (657) GATTS_DEMO: ADD_DESCR_EVT, status 0, attr_handle 43, service_handle 40

I (667) GATTS_DEMO: REGISTER_APP_EVT, status 0, app_id 1

Chapter 8. Local Control 215

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/gatt_server
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/test_case/gatt_server

Figure 8.19. Bluetooth services in the example

I (677) GATTS_DEMO: CREATE_SERVICE_EVT, status 0, service_handle 44

I (677) GATTS_DEMO: SERVICE_START_EVT, status 0, service_handle 44

I (687) GATTS_DEMO: ADD_CHAR_EVT, status 0, attr_handle 46, service_handle 44

I (697) GATTS_DEMO: ADD_DESCR_EVT, status 0, attr_handle 47, service_handle 44

I (6687) GATTS_DEMO: ESP_GATTS_CONNECT_EVT, conn_id 0, remote 4a:13:d8:ca:b3:cf:

I (6687) GATTS_DEMO: CONNECT_EVT, conn_id 0, remote 4a:13:d8:ca:b3:cf:

I (6987) GATTS_DEMO: ESP_GATTS_MTU_EVT, MTU 500

I (6987) GATTS_DEMO: ESP_GATTS_MTU_EVT, MTU 500

I (7347) GATTS_DEMO: update connection params status = 0, min_int = 16, max_int

= 32,conn_int = 24,latency = 0, timeout = 400

I (15117) GATTS_DEMO: GATT_READ_EVT, conn_id 0, trans_id 3, handle 42

I (23037) GATTS_DEMO: GATT_WRITE_EVT, conn_id 0, trans_id 4, handle 46

I (23037) GATTS_DEMO: GATT_WRITE_EVT, value len 1, value :

I (23037) GATTS_DEMO: 00

I (23037) app_driver: Light OFF

I (30987) GATTS_DEMO: GATT_WRITE_EVT, conn_id 0, trans_id 5, handle 46

I (30987) GATTS_DEMO: GATT_WRITE_EVT, value len 1, value :

I (30987) GATTS_DEMO: 01

I (30987) app_driver: Light ON

216 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

8.6 Summary
In this chapter, we first presented an overview of the framework model, applicable condi-
tions, and application scenarios of local control. We also compared it to remote control, en-
abling you to assess the suitability of local control functionality based on your unique project
requirements. Local discovery plays a pivotal role in local control as it governs the ability
of smartphones to search for devices within the LAN. This allows smartphones to retrieve
device characteristics and facilitates subsequent control of the identified devices. Therefore,
we also delved into the operational mode of the local discovery protocols, specifically in
terms of the principle layer. We also conducted a comparative analysis of the characteristics
of the two modes: broadcast and multicast, shedding light on their similarities and differ-
ences. The most commonly used local discovery protocol is mDNS, which provides you with
the flexibility to implement local discovery functionality in your IoT projects. You can also
leverage the resource discovery technology inherent in the Bluetooth protocol directly when
utilising Bluetooth for control purposes.

Then we introduced the most critical data communication protocols and corresponding data
encryption algorithms in local control. The fundamental protocols for data communication
in local control are TCP and UDP . While you can directly utilise these protocols for local con-
trol, it is generally not recommended due to certain limitations. TCP and UDP are classified
as transport layer protocols and do not inherently carry application format data, in contrast
to protocols like HTTP and CoAP, which incorporate an application layer on top of the trans-
port layer. Furthermore, it’s important to note that transport layer protocols such as TCP and
UDP do not support direct encryption of data using protocols like TLS or DTLS. Therefore,
relying solely on the transport layer protocol for data transmission may not guarantee the
security of the transmitted data. Hence, it is recommended that you utilise protocols such
as HTTP with TLS or CoAP with DTLS for data communication in local control scenarios.

Finally, we introduced how to implement the complete local control function based on the
esp_local_ctrl component in ESP-IDF. esp_local_ctrl supports local control based
on Wi-Fi and Bluetooth, with data communication protocols that include HTTPS for Wi-Fi
and Bluetooth protocols for Bluetooth. You can get started with local control development
with esp_local_ctrl component. Additionally, the esp_local_ctrl component does
not support local network device discovery functionality. You need to implement device dis-
covery functionality using the mDNS module. The esp_local_ctrl component is widely
used in ESP-IDF, and you can find provisioning and local communication features in the
wifi_provisioning component for network configuration and local communication.

Of course, there are various protocols and implementation methods for local control. If
the esp_local_ctrl component does not meet your requirements, you can follow the
example codes in sections 8.2, 8.3, and 8.4 to build your own local control framework.

Chapter 8. Local Control 217

Chapter
9

Cloud Control

After reading the local control introduced in Chapter 8, you should know how to design the
local control function for your IoT projects. However, this function is far from enough, be-
cause a complete IoT project aims to connect all things and local control has a geographical
limitation: the smartphone must be in the same local area network (LAN) as the controlled
device. If you want to remotely control the IoT devices at home through your smartphone,
you will need the remote control function.

This chapter mainly introduces how to remotely control devices based on ESP32-C3. The
purpose is to help you understand what remote control and its process are, what protocol
is involved, how to build an MQTT server locally to simulate the cloud server, and how to
build a product model through ESP RainMaker for remote control of a device.

9.1 Introduction to Remote Control
What is remote control? As the name suggests, remote control refers to the behaviour of one
device (such as smartphones, computers, or other network devices) controlling another de-
vice through a wide area network (WAN). It is not restricted by region. For example, you can
control smart lights at home through your smartphone in the workplace. In general, both
the remotely-controlling device and the remotely-controlled device need to be connected to
the cloud server, and the commands sent by the controlling device are transmitted to the
controlled device over the cloud server.

Similar to local control (covered in Chapter 8), remote control is also a way of data commu-
nication, but it is over WAN other than LAN. In local control, the server can be the controlled
device itself, or a host in LAN; the controlling device (such as mobile phones or computers)
must be in the same LAN as the server, which is a limitation. In remote control, the server
is generally a cloud server (several large-scale cloud server providers are Alibaba Cloud,
Amazon Cloud, Tencent Cloud, etc.), the controlling device and the controlled device need
to be connected to the cloud server, and the data forwarding and storage are handled by the
cloud server.

The advantage of remote control is that the control is flexible and can break through the
limitation of space. However, compared with local control, it requires cloud services and

218

network traffic, thus more costly. Moreover, it usually has higher latency, resulting in a
greater risk of leaking data.

As the implementation principle and components of ESP RainMaker covered in Section 3.2
indicate, in remote control, both the controlling device (smartphone) and the controlled
device (such as ESP32-C3) are directly connected to the cloud server, which facilitates the
transfer of data between the devices. As a result, it is essential to have a thorough under-
standing of how these devices communicate with the cloud server.

Remote control costs more than local control as it requires cloud servers, but it is more
convenient to remotely view the operating status of the controlled device. Both have their
advantages and disadvantages. At present, most of the IoT devices on the market can be
connected to various clouds. For instance, the products of Xiaomi, Alibaba, and JD are
connected to their own cloud platform. The user only needs to download the corresponding
app and perform the provision and binding to view and control their IoT devices.

If your smartphone and the controlled device are on the same LAN, local control is a better
option. Otherwise, remote control has to be used. Local control has its own use scenarios
and advantages. The advantages of both should be fully utilized to develop the most suitable
IoT control technology.

9.2 Cloud Data Communication Protocols
Section 9.1 described what remote control was. As the topological structure of remote con-
trol shows, the smartphone and the controlled device are not directly connected. They are
connected to the cloud server, and the data sent by both are forwarded by the cloud. Then,
what is the protocol for connecting the device to the cloud? What is the protocol for data
communication? Only by figuring out these protocols can you have a basic understanding
of remote control.

At present, common protocols for connecting devices to the cloud are the MQTT protocol
and HTTP protocol. This chapter will only cover the former as the latter has been introduced
in Chapter 8.

9.2.1 MQTT Introduction

MQTT (Message Queue Telemetry Transport) is a server-client publish-subscribe messaging
transmission protocol. It is open, simple, lightweight, standardized, and easy to implement.
These characteristics make it a standard IoT transmission protocol that is ideal for resource-
constrained devices. The protocol was released by IBM in 1999. At present, it has been
developed to v5.x, and ESP-IDF supports v3.1.1. The two versions have significant differ-
ences and are not compatible with each other. Most cloud platforms currently still rely on
the older v3.x version. Therefore, in this chapter, we will be focusing on MQTT v3.x.

Chapter 9. Cloud Control 219

The MQTT protocol runs over the TCP protocol. It has the following features:

• The publish/subscribe pattern which supports one-to-many message distribution and
decoupling of applications.

• A messaging transport that is agnostic to the content of the payload.
• Three qualities of service (QoS) for message delivery.
• Small transport overhead and protocol exchanges minimised to reduce network traffic.
• Will messages to notify interested parties when an abnormal disconnection occurs.

9.2.2 MQTT Principles

The MQTT protocol is based on client-server communication. It defines three roles: pub-
lisher, broker, and subscriber. The publisher and the subscriber serve as the Client, which
can both publish and subscribe messages. The broker acts as the Server. Figure 9.1 shows
the architecture of the protocol.

Figure 9.1. Architecture of MQTT protocol

(1) Client: a device running MQTT applications, such as smartphones and controlled de-
vices. It can work as a publisher or subscriber. A Client always connects to the Server over
the network. It can:

• Publish application messages that other Clients might be interested in.
• Subscribe to request application messages that it is interested in receiving.
• Unsubscribe to remove a request for application messages.
• Disconnect from the Server.

(2) Server: a broker that acts as an intermediary between Clients publishing application
messages and Clients requesting to subscribe to them, such as cloud platforms and cloud
servers. It can:

220 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

• Accept network connections from Clients.
• Accept application messages published by Clients.
• Process subscribe and unsubscribe requests from Clients.
• Forward application messages that match Client subscriptions.

(3) Subscription: comprising a Topic Filter and a maximum QoS. It is associated with
a single Session, while a Session may contain multiple Subscriptions. Each Subscription
within a session has a different Topic Filter.

(4) Topic: the label attached to an application message. It is matched against the Subscrip-
tions known to the Server. The Server sends a copy of the application message to each Client
that has a matching Subscription.

(5) Topic Filter: an expression contained in a Subscription, indicating an interest in one or
more topics. A Topic Filter can include wildcard characters to represent single or multiple
characters.

(6) Session: a stateful interaction between a Client and a Server from the start to the end
of a connection. Some Sessions last only as long as the Network Connection.

(7) Publish/Subscribe: the core of the MQTT protocol. It allows communication between
subscribers and publishers without knowledge of each other’s IP address or port number.
Direct connection is not even necessary, and subscribers and publishers can operate with-
out knowing each other’s existence. Message exchanges between them are done by the
broker, which filters all the published messages and then distributes them to the matching
subscribers.

Both subscribers and publishers are concerned about the topic of the message. For example,
a smartphone wants to check the status of a smart light A. In this case, the smartphone
can act as a subscriber to subscribe to the message with the topic A/light_state from
the broker. Smart light A can act as a publisher. When its state changes, it publishes a
status message with the same topic to the broker. Then, the broker filters subscribers who
have subscribed to the topic and publishes the status message to them. In this way, the
smartphone can query the status of smart light A.

9.2.3 MQTT Message Format

As defined by the MQTT protocol, an MQTT control packet consists of three parts: fixed
header, variable header, and payload.

(1) Fixed header, present in all MQTT control packets.

As shown in Figure 9.2, the packet type takes 4 bits.

There are 14 types of control packets in total, as listed in Table 9.1.

Chapter 9. Cloud Control 221

Figure 9.2. Fixed header of MQTT control packets

Table 9.1. Types of MQTT control packets

Name Value Direction of Flow Description

Reserved 0 Forbidden Reserved

CONNECT 1 Server (Client Client request to connect to Server

CONNACK 2 Server) Client Connection acknowledgement

PUBLISH 3 Server , Client Publish message

PUBACK 4 Server , Client Publish of QoS 1 message acknowledged

PUBREC 5 Server , Client Publish received (assured delivery part 1)

PUBREL 6 Server , Client Publish release (assured delivery part 2)

PUBCOMP 7 Server , Client
Publish of QoS 2 message complete
(assured delivery part 3)

SUBSCRIBE 8 Server (Client Subscribe request of Client

SUBACK 9 Server) Client Subscribe acknowledgement

UNSUBSCRIBE 10 Server (Client Unsubscribe request

UNSUBACK 11 Server) Client Unsubscribe acknowledgement

PINGREQ 12 Server (Client PING request

PINGRESP 13 Server) Client PING response

DISCONNECT 14 Server (Client Client is disconnecting

There are three MQTT QoS levels: QoS 0, QoS 1, and QoS 2.

a. QoS 0: delivered once at most.

The transmission of messages is completely dependent on the underlying TCP/IP net-
work. As the MQTT protocol does not define response and retry, the message will either
reach the server only once or not at all. The flow of MQTT QoS 0 is shown in Figure 9.3.

b. QoS 1: delivered once at least.

The acknowledgement of message receipt is provided by the PUBACK message. If the
communication link or the sending device is abnormal, or the message is not received

222 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 9.3. Flow of MQTT QoS 0

within the specified time, the sender will redeliver the message, and in the fixed header
of the MQTT Control packet set the duplicate flag (DUP). The flow of MQTT QoS 1 is
shown in Figure 9.4.

Figure 9.4. Flow of MQTT QoS 1

c. QoS 2: delivered only once.

This is the highest quality of service where message loss and duplication are unacceptable
and increased overhead is incurred. The flow of MQTT QoS 2 is shown in Figure 9.5.

Bits [3–0] of the fixed header contain flags specific to each type of control packets. Except
the PUBLISH type, the flag bits of other types are taken by the system. For types without
flags, the bits are reserved. If invalid flags are received, the receiver must close the network
connection. The bits [3–0] in byte 1 of the PUBLISH packet header are as follows:

a. DUP (bit3): duplicate delivery.

“0” means that this is the first time that the Client or Server requests to send a PUBLISH

Chapter 9. Cloud Control 223

Figure 9.5. Flow of MQTT QoS 2

message. “1” indicates that this may be a duplicate delivery of an earlier message. The
DUP flag of QoS 0 messages must be set to 0.

b. QoS (bits [2–1]): determining the number of message delivery.

Table 9.2 shows how to represent QoS values in bits [2–1].

Table 9.2. Representation of QoS values in bits [2–1]

QoS Value Bit2 Bit1 Description

0 0 0 Delivered once at most

1 0 1 Delivered once at least

2 1 0 Delivered only once

— 1 1 Reserved

c. RETAIN (bit0): determining the need for message retaining.

If this flag is set to 1 in a PUBLISH message sent by the Client to the Server, the Server
must store this message and its QoS to distribute them later to subscribers with a match-
ing topic. Each Client subscribing to a topic pattern that matches the topic of the retained

224 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

message receives the retained message immediately after they subscribe. The RETAIN
flag is usually used for will messages. For example, after a device is unexpectedly dis-
connected, the broker will send the will message to the smartphone, where the device
will be displayed as offline.

The second and subsequent bytes indicate the remaining length, indicating the number
of remaining bytes within the current packet, including data in the variable header and
the payload. The remaining length is encoded using a variable-length encoding scheme
that uses a single byte for values up to 127. For larger values, the least significant seven
bits of each byte encode the data, and the most significant bit is used to indicate whether
there are following bytes in the representation. Thus, each byte encodes 128 values and a
“continuation bit”. The maximum number of bytes in the remaining length field is 4B. The
number of remaining length bytes is shown in Table 9.3.

Table 9.3. Number of remaining length bytes

Byte Minimum Value Maximum Value

1 0 (0x00) 127 (0x7F)

2 128 (0x80, 0x01) 16383 (0xFF, 0x7F)

3 16384 (0x80, 0x80, 0x01) 2097151 (0xFF, 0xFF, 0x7F)

4 2097152 (0x80, 0x80, 0x80, 0x01) 268435455 (0xFF, 0xFF, 0xFF, 0x7F)

(2) Variable header.

Some types of MQTT Control Packets contain a variable header component. It resides be-
tween the fixed header and the payload. The content of the variable header varies depending
on the packet type. The Packet Identifier field of the variable header is present in multiple
types of packets, such as PUBLISH (when QoS¿0), PUBACK, PUBREC, PUBREL, PUBCOMP,
SUBSCRIBE, SUBACK, UNSUBSCRIBE, and UNSUBACK.

(3) Payload: the third part of an MQTT control packet, containing the message content.

It exists in five types of packets, CONNECT, SUBSCRIBE, SUBACK, UNSUBSCRIBE, and
PUBLISH.

a. CONNECT: Client ID, topic, message, user name, and password.
b. SUBSCRIBE: a series of topics to subscribe to and the QoS.
c. SUBACK: the server’s acknowledgment and reply to the topic (that the Client requests

to subscribe) and the QoS.
d. UNSUBSCRIBE: the topics to unsubscribe.
e. PUBLISH: the to-be-published application message, which can be zero-length.

Chapter 9. Cloud Control 225

9.2.4 Protocol Comparison

Chapter 8 introduced protocols such as TCP, HTTP, UDP, and CoAP, which can facilitate
local control. In addition, they can also be used for remote control.

MQTT vs. TCP
MQTT is an application protocol based on the TCP protocol. Both can be used for re-
mote data communication. For socket programming, TCP requires users to develop their
own application protocols, which have limited usability in the current environment of IoT
interconnection. On the other hand, MQTT is a standardized lightweight protocol for
IoT and is widely used by most cloud servers, such as Alibaba Cloud and Amazon Cloud,
making it advantageous for product integration.

MQTT vs. HTTP
Both are client-server application protocols based on TCP. However, compared to MQTT,
HTTP has a much larger overhead in message size, and it is generally difficult for an HTTP
server to initiate data push to clients, which may not meet the requirements of remote
control in IoT. In cases where only one-way transmission from clients to the server is
needed, HTTP protocol can be used.

MQTT vs. CoAP
Similar to HTTP, CoAP adopts the REST model where the server creates resources in URI
format and clients access these resources using GET, PUT, POST, and DELETE methods.
Besides, CoAP also has a similar protocol style to HTTP, but it requires fewer device re-
sources and network overheads, making it suitable for IoT. However, CoAP may not be a
good choice for remote control. If smartphones send control commands for remote con-
trol, the architecture may require CoAP + Web + Database + App. When CoAP protocol is
used, control commands must pass through the Database before reaching the device, be-
cause CoAP is connectionless. When smartphones send control commands, the server will
first store the control commands in the Database, and the device will request the server
via GET method to check if there are any control commands, and then decide whether to
operate. On the other hand, MQTT is connection-oriented, and the server will forward
the control commands from smartphones to all subscribed devices without storing them.
Only MQTT client + MQTT server + App is needed to implement remote control, making
MQTT more advantageous in terms of deployment.

9.2.5 Setting Up MQTT Broker on Linux and Windows

Some commonly used MQTT brokers are Mosquitto, EMQTT, and HiveMQ. HiveMQ is not
open-source and has a fee, so it may not be suitable for local testing. EMQTT has powerful
features, such as viewing data traffic on a web interface, and can be used on most cloud
servers, with both free and paid custom versions available.

226 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

This section focuses on how to use Mosquitto to set up an MQTT broker on Windows or
Linux. Mosquitto is an open-source (EPL/EDL licensed) message broker that implements
MQTT protocol versions 5.0, 3.1.1, and 3.1. It is considered a lightweight open-source
software. The Mosquitto project provides a C language library for implementing MQTT
clients and popular command-line MQTT clients mosquitto_pub and mosquitto_sub.
Besides, Mosquitto can also be used as an MQTT broker. For more information, please refer
to its official website.

1. Setting up MQTT broker on Linux

All terminal commands in this section must be run in the user role. The $ symbol represents
the command prompt.

(1) Download mosquitto-2.0.12.tar.gz from https://mosquitto.org/files/source.

(2) Extract Mosquitto.

$ tar -zxvf mosquitto-2.0.12.tar.gz

Check if the installation is successful using mosquitto --help.

$ cd mosquitto-2.0.12/src
$ mosquitto --help
mosquitto version 2.0.12

mosquitto is an MQTT v5.0/v3.1.1/v3.1 broker.

Usage: mosquitto [-c config_file] [-d] [-h] [-p port]

-c : specify the broker config file.

-d : put the broker into the background after starting.

-h : display this help.

-p : start the broker listening on the specified port.

Not recommended in conjunction with the -c option.

-v : verbose mode - enable all logging types. This overrides

any logging options given in the config file.

See https://mosquitto.org/ for more information.

(3) Start MQTT broker and test in the MQTT client.

a. Start MQTT.

$ mosquitto

b. Use mosquitto_sub to subscribe to topic.

$ mosquitto sub -t ‘test/topic’ -v

c. Open a new terminal and use mosquitto_pub to publish data.

$ mosquitto pub -t ‘test/topic’ -m ‘hello world’

d. In the original terminal where the topic was subscribed, view the received data.

$ mosquitto sub -t ‘test/topic’ -v
test/topic hello world

Chapter 9. Cloud Control 227

https://mosquitto.org/files/source

2. Setting up MQTT broker on Windows

(1) Download the 32-bit or 64-bit MQTT installation package based on your computer’s
architecture. Double-click to install it.

(2) Open a command prompt window, navigate to the directory where Mosquitto is installed,
and start the Mosquitto broker.

cd C:\Program Files\mosquitto\

(3) Use mosquitto_sub.exe to subscribe to topic.

C:\Program Files\mosquitto>mosquitto sub.exe -t ‘test/topic’ -v

(4) Use mosquitto_pub.exe to publish data.

C:\Program Files\mosquitto>mosquitto pub.exe -t ‘test/topic’ -m ‘hello world’

9.2.6 Setting Up MQTT Client Based on ESP-IDF

The component used in ESP-IDF to implement MQTT client is ESP-MQTT, which has the
following features:

• Support for MQTT, MQTT over TLS, MQTT over WebSocket, and MQTT over Web-
Socket, and TLS

• Easy to set up with URI
• Multiple clients in one application
• Support for subscribing, publishing, authentication, last will messages, keep-alive pings,

and QoS messages

The following code is based on ESP-IDF and creates a connection to a local MQTT broker.
For complete code, please go to ESP-IDF project on GitHub and navigate to the directory
esp-idf/examples/protocols/mqtt/tcp.
1. //MQTT event handler function

2. static void mqtt_event_handler(void *handler_args, esp_event_base_t base,

3. int32_t event_id, void *event_data)

4. {

5. esp_mqtt_event_handle_t event = event_data;

6. esp_mqtt_client_handle_t client = event->client;

7. int msg_id;

8. switch ((esp_mqtt_event_id_t)event_id) {

9. case MQTT_EVENT_CONNECTED:

10. ESP_LOGI(TAG, "MQTT_EVENT_CONNECTED");

11. //Subscribe to topic /topic/test

12. msg_id = esp_mqtt_client_subscribe(client, "/topic/test", 0);

13. ESP_LOGI(TAG, "sent subscribe successful, msg_id=%d", msg_id);

14. break;

15. case MQTT_EVENT_DISCONNECTED:

16. ESP_LOGI(TAG, "MQTT_EVENT_DISCONNECTED");

228 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf/tree/master/examples/protocols/mqtt/tcp

17. break;

18. case MQTT_EVENT_SUBSCRIBED:

19. ESP_LOGI(TAG, "MQTT_EVENT_SUBSCRIBED, msg_id=%d", event->msg_id);

20. break;

21. case MQTT_EVENT_UNSUBSCRIBED:

22. ESP_LOGI(TAG, "MQTT_EVENT_UNSUBSCRIBED, msg_id=%d", event->msg_id);

23. break;

24. case MQTT_EVENT_PUBLISHED:

25. ESP_LOGI(TAG, "MQTT_EVENT_PUBLISHED, msg_id=%d", event->msg_id);

26. break;

27. case MQTT_EVENT_DATA:

28. ESP_LOGI(TAG, "MQTT_EVENT_DATA");

29. ESP_LOGI(TAG, "TOPIC=%.*s\r\n", event->topic_len, event->topic);

30. ESP_LOGI(TAG, "DATA=%.*s\r\n", event->data_len, event->data);

31. break;

32. case MQTT_EVENT_ERROR:

33. ESP_LOGI(TAG, "MQTT_EVENT_ERROR");

34. break;

35. default:

36. ESP_LOGI(TAG, "Other event id:%d", event->event_id);

37. break;

38. }

39. }

40.

41. #define CONFIG_BROKER_URL "mqtt://192.168.3.4/"

42.

43. static void esp_mqtt_start(void)

44. {

45. //Configure MQTT URI

46. esp_mqtt_client_config_t mqtt_cfg = {

47. .uri = CONFIG_BROKER_URL,

48. };

49.

50. //Initialise MQTT client

51. esp_mqtt_client_handle_t client = esp_mqtt_client_init(&mqtt_cfg);

52.

53. //Register event handler function

54. esp_mqtt_client_register_event(client, ESP_EVENT_ANY_ID, mqtt_event_handler, NULL);

55.

56. //Start MQTT client

57. esp_mqtt_client_start(client);

58. }

The client device connects to the MQTT broker and subscribes to the topic /topic/test.
After another MQTT client publishes the message hello world to the topic /topic/test,
the following log will show up in the device:

I (2598) wifi station: MQTT_EVENT_CONNECTED

Chapter 9. Cloud Control 229

I (2598) wifi station: sent subscribe successful, msg_id=25677

I (2648) wifi station: MQTT_EVENT_SUBSCRIBED, msg_id=25677

I (314258) wifi station: MQTT_EVENT_DATA

I (314258) wifi station: TOPIC=/topic/test

I (314258) wifi station: DATA=hello world

9.3 Ensuring MQTT Data Security
Data transmitted using the MQTT protocol is in plain text, which means it can be intercepted
if not encrypted. In Chapter 8.4.1, the TLS protocol is introduced as a means to ensure
that data can only be decrypted by the communicating parties, thereby safeguarding data
security and legitimacy.

Similarly, TLS can also be used for encryption in cloud communication over MQTT. Since it
has already been covered in Chapter 8.4.1, this section only introduces what the certificates
in the TLS handshake mean and what functions they perform, how to generate certificates
locally, and how to set up a mutual authentication TLS environment based on the local
MQTT broker.

9.3.1 Meaning and Function of Certificates

1. Introduction

Certificates, also known as public-key certificates (PKC), contain personal information such
as user name, organization, email, the user’s public key, and the digital signature of a cer-
tification authority or certifying authority (CA). You can think of a certificate as a personal
identity card, with the public key serving as the card number, identifying which individual
it represents. A CA is like a police station that issues the card. It can be an international
organization, government entity, for-profit company, or general individual.

2. Certificate generation

(1) User A generates a private-public key pair locally using an asymmetric encryption al-
gorithm.

(2) User A submits the locally generated public key and certificate information file to a CA
for digital signing and certificate generation.

(3) The CA generates a private-public key pair locally, which is the ca.key mentioned in
a later example. The CA uses its private key to digitally sign User A’s public key and
issues the certificate.

(4) User B obtains the CA’s public key, which is publicly available, and uses it to verify the
legitimacy of the digital signature in User A’s certificate. If the verification is successful,
it is confirmed that the public key in User A’s certificate belongs to User A.

230 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

(5) To send data to User A, User B only needs to encrypt the data using the public key in
User A’s certificate and send it. User A then decrypts the data with its own private key.

So far, we have covered the generation of User A’s certificate and the data communication
process between User A and User B. However, it only involves one-way authentication of
TLS certificate—User A is like the server side, User B is like the client side, and this process
can be considered as the client’s verification of the server’s certificate. A similar process is
followed for the server’s verification of the client’s certificate.

3. Certificate function

As indicated by the above certificate generation process, certificates are a means to verify
the legitimacy of the peer device. Only when it is legitimate can the transmitted data can be
secured without the risk of being leaked.

4. Certificate standard

Certificates adopt the common format X.509. All certificates comply with the ITU-T X.509
international standard. The structure of X.509 certificates is described and encoded using
Abstract Syntax Notation One (ASN1).

A certificate typically consists of the following fields:

• Version Number: the version number of the specification. The current version is 3,
corresponding to the value 0x2.

• Serial Number: the unique serial number maintained by the CA and assigned to each
certificate for tracking and revocation. The maximum size is 20 bytes.

• Signature Algorithm: the algorithm used for digital signatures.
• Validity: the validity period of the certificate, including start and end dates.
• Subject: the identifier information of the certificate holder, namely the personal infor-

mation mentioned above.
• Subject Public Key Info: protected information related to the public key, including the

public key algorithm and subject unique identifier.

5. Certificate format

Privacy Enhanced Mail (PEM) is a common format for X.509 certificates. PEM files are
usually seen with the extensions .crt or .cer (for certificates), .key (for private keys),
and .csr (for certificate signing request).

The PEM file is a text file that usually contains headers, footers, and the content blocks
encoded in Base64.

Chapter 9. Cloud Control 231

9.3.2 Generating Certificates Locally

OpenSSL is an open-source Secure Socket Layer (SSL) cryptographic library that provides
functions for algorithms, key and certificate encapsulation management, and SSL protocol
implementation. It consists of three parts: an SSL protocol library, command-line tools for
applications, and cryptographic algorithm libraries. The following examples demonstrate
how use it to generate certificates and keys on Linux.

1. Generating private keys for the certificate

This command generates a private key (2048 bits) for the certificate. The public key can be
extracted from it.
$ openssl genrsa -out ca.key 2048
Generating RSA private key, 2048 bit long modulus

...

..+++

.......+++

e is 65537 (0x10001)

This command generates a private key (2048 bits) for the server certificate.

$ openssl genrsa -out server.key 2048
Generating RSA private key, 2048 bit long modulus

................+++

........................+++

e is 65537 (0x10001)

This command generates a private key (2048 bits) for the client certificate.

$ openssl genrsa -out client.key 2048
Generating RSA private key, 2048 bit long modulus

...+++

..+++

e is 65537 (0x10001)

The recommended minimum key length for RSA algorithm is 2048 bits. If the key length is
1024 bits, mbedtls will reject TLS negotiation due to low security.

2. Generating CSRs for the certificate

This command generates a certificate sign request (CSR) that is required by the CA cer-
tificate. Enter the required information as prompted. The Organization Name can be
entered as desired because this is only for local use.

$ openssl req -out ca.csr -key ca.key -new
You are about to be asked to enter information that will be incorporated into

your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

232 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [AU]:CN
State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:IOT Certificate Test
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

Please enter the following ‘extra’ attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

This command generates a CSR that is required by the server certificate. Note that the
Common Name field should be filled with the domain name or IP address of the server.
$ openssl req -out server.csr -key server.key -new
You are about to be asked to enter information that will be incorporated into

your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [AU]:CN
State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:MQTT Server
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:192.168.3.4
Email Address []:

Please enter the following ‘extra’ attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

3. Generating CA certificate, server certificate, and client certificate

This command generates the CA certificate ca.crt.

$ openssl x509 -req -in ca.csr -out ca.crt -sha256 -days 5000 -signkey ca.key
Signature ok

subject=/C=CN/ST=Some-State/O=IOT Certificate Test

Getting Private key

This command generates the server certificate server.crt.

Chapter 9. Cloud Control 233

$ openssl x509 -req -in server.csr -out server.crt -sha256 -CAcreateserial
-days 5000 -CA ca.crt -CAkey ca.key
Signature ok

subject=/C=CN/ST=Some-State/O=MQTT Server/CN=192.168.3.4

Getting CA Private Key

This command generates the client certificate client.crt.

$ openssl x509 -req -in client.csr -out client.crt -sha256 -CAcreateserial
-days 5000 -CA ca.crt -CAkey ca.key
Signature ok

subject=/C=CN/ST=Some-State/O=MQTT Client/CN=192.168.3.5

Getting CA Private Key

NOTE

Do not use the SHA1 algorithm, as mbedtls may reject TLS negotiation due to low security.

9.3.3 Configuring MQTT Broker

Section 9.2.5 described how to set up an MQTT broker on Windows or Linux using Mosquitto,
and this section will introduce how to do it over TLS.

Firstly, in the root directory of mosquitto, open the configuration file mosquitto.conf,
and add the absolute path to the files that are generated in Section 9.3.2, including the CA
certificate (ca.crt), the server certificate (server.crt), and the private key of the server
certificate (server.key). The command is as follows:

$ port 8883
certfile {absolute path}/server.crt

keyfile {absolute path}/server.key

cafile {absolute path}/ca.crt

require_certificate true

use_identity_as_username true

Then, restart Mosquitto and load the configuration file.

$ mosquitto -c mosquitto.conf -v
1635927859: mosquitto version 1.6.3 starting

1635927859: Config loaded from mosquitto.conf.

1635927859: Opening ipv4 listen socket on port 8883.

1635927859: Opening ipv6 listen socket on port 8883.

9.3.4 Configuring MQTT Client

In Section 9.2.5, we have covered how to set up an MQTT client based on ESP-IDF using
MQTT over TCP, but this approach cannot guarantee data security. So, in this section, we
will introduce a more secure approach, which is setting up the client using MQTT over TLS.

234 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

1.extern const uint8_t client_cert_pem_start[] asm("_binary_client_crt_start");

2. extern const uint8_t client_cert_pem_end[] asm("_binary_client_crt_end");

3. extern const uint8_t client_key_pem_start[] asm("_binary_client_key_start");

4. extern const uint8_t client_key_pem_end[] asm("_binary_client_key_end");

5. extern const uint8_t server_cert_pem_start[] asm("_binary_ca_crt_start");

6. extern const uint8_t server_cert_pem_end[] asm("_binary_ca_crt_end");

7.

8. #define CONFIG_BROKER_URL "mqtts://192.168.3.4/"

9.

10. //Configure MQTT URI

11. esp_mqtt_client_config_t mqtt_cfg = {

12. .uri = CONFIG_BROKER_URL,

13. .client_cert_pem = (const char *)client_cert_pem_start,

14. .client_key_pem = (const char *)client_key_pem_start,

15. .cert_pem = (const char *)server_cert_pem_start,

16. };

(1) Load the client certificate (client.crt), the client private key (client.key), and
the CA certificate that authenticates the server (ca.crt).

(2) Change the previous MQTT connection to mqtts.
(3) Use the default port number 8883.
(4) Modify the CMakeLists.txt file to load the certificates into the firmware during

compilation. The code is as follows:

1. target_add_binary_data(${CMAKE_PROJECT_NAME}.elf "main/client.crt" TEXT)

2. target_add_binary_data(${CMAKE_PROJECT_NAME}.elf "main/client.key" TEXT)

3. target_add_binary_data(${CMAKE_PROJECT_NAME}.elf "main/ca.crt" TEXT)

After compilation and flashing, connect the device to Wi-Fi. Then, both the client and
server will show a successful connection log, and the client will subscribe to the topic
/topic/test. The server’s log is as follows:
1635927859: mosquitto version 1.6.3 starting

1635927859: Config loaded from mosquitto.conf.

1635927859: Opening ipv4 listen socket on port 8883.

1635927859: Opening ipv6 listen socket on port 8883.

1635927867: New connection from 192.168.3.5 on port 8883.

1635927869: New client connected from 192.168.3.5 as ESP32_2465F1 (p2, c1, k120,

u’192.168.3.5’).

1635927869: No will message specified.

1635927869: Sending CONNACK to ESP32_2465F1 (0, 0)

1635927869: Received SUBSCRIBE from ESP32_2465F1

1635927869: /topic/test (QoS 0)

1635927869: ESP32_2465F1 0 /topic/test

1635927869: Sending SUBACK to ESP32_2465F1

Now, use mosquitto_pub to send “hello world” to the topic /topic/test. Check if the
device can receive it. The command is as follows:

Chapter 9. Cloud Control 235

$ mosquitto pub -h 192.168.3.4 -p 8883 -t \/topic/test" -m ‘hello world’
--cafile ca.crt --cert client.crt --key client.key

Here is the log on the device side:
I (1600) esp_netif_handlers: sta ip: 192.168.3.5, mask: 255.255.255.0, gw: 192.168.3.1
I (1600) wifi station: got ip:192.168.3.5
I (1600) wifi station: connected to ap SSID:myssid password:12345678
I (1610) wifi station: Other event id:7
W (1630) wifi:<ba-add>idx:0 (ifx:0, 34:29:12:43:c5:40), tid:0, ssn:4, winSize:64
I (4110) wifi station: MQTT_EVENT_CONNECTED
I (4120) wifi station: sent subscribe successful, msg_id=42634
I (4140) wifi station: MQTT_EVENT_SUBSCRIBED, msg_id=42634
I (10290) wifi station: MQTT_EVENT_DATA
I (10290) wifi station: TOPIC=/topic/test
I (10290) wifi station: DATA=hello world

9.4 Practice: Remote Control through ESP RainMaker
After reading the previous chapters, you should have a basic understanding of Wi-Fi con-
figuration and MQTT protocol. In this section, we will delve deeper into the Smart Light
project discussed in this book. We will utilise the ESP RainMaker to provide the smart light
with more functions, including remote control, local control, OTA upgrade, and scheduling.
Besides, we will enable third-party applications Alexa and Google Home to control the smart
light using Skill and facilitate voice control using voice assistants such as Alexa and Google
Assistant.

A standard voice assistant allows you to switch a smart light on or off, as well as adjust its
brightness. If the smart light supports colour and colour temperature adjustments, you can
send specific voice commands to alter these settings. Moreover, you can use voice assistant-
enabled speakers such as Echo and Nest to discover and control the light.

9.4.1 ESP RainMaker Basics

Before delving into the functions of ESP RainMaker, this section first explains some funda-
mental concepts that will be mentioned in the description of the ESP RainMaker framework
(backend and frontend). The ESP RainMaker framework is illustrated in Figure 9.6.

Figure 9.6. ESP RainMaker framework

236 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Node
It refers to the device model that represents the physical device (such as ESP32-C3) in the
cloud. Each node has a unique identifier, namely, node ID. It is the smallest operational
unit and a representation of the physical device in the ESP RainMaker framework.

Node attribute
It is used to better describe and define the functions of nodes. ESP RainMaker has set
default metadata for the node, including fw_version and model. The name and type
that are set when a node is created also belong to the default metadata. You can also add
your own information to the metadata to better describe the node.

Device
It is a logical entity that the user can control, such as a switch, smart light, temperature
sensor, or fan. Unlike a node, a device is the smallest unit that can be operated at the user
level.

Device attribute
Similar to node attribute, it is used to better describe and define functions of devices.

Service
In the ESP RainMaker framework, a service is a very similar entity to a device. The main
difference is that the service does not require operations from the user. For example, the
OTA upgrade service has some states that do not require any operation and management
from the user.

Parameter
It is used to implement functions of devices and services, such as the power status, bright-
ness, and colour of a smart light, and status updates during OTA upgrades.

The concepts of nodes, devices, parameters, and services in the ESP RainMaker framework
can aptly describe the form and functions of the product. For example, to create a smart
light with controllable power status, brightness, colour, and scheduled switching, the light is
represented by a node and a device, the power status, brightness, and colour are controlled
by parameters, and the scheduling function is achieved by a service.

9.4.2 Node and Cloud Backend Communication Protocol

The communication between the node and cloud backend is encrypted using TLS over
MQTT, and their identities are mutually authenticated using X.509 certificates. The private
key used for the node connection is automatically generated on the node.

During the first Wi-Fi provisioning, ESP32-C3 obtains a certificate through Assisted Claim-
ing, and saves it in its flash. The process for ESP32-C3 to use Assisted Claiming is shown in
Figure 9.7.

Chapter 9. Cloud Control 237

Figure 9.7. ESP32-C3 Assisted Claiming

(1) ESP32-C3 generates an RSA2048 private key, uses its MAC address as the initial node
ID, and then sends relevant messages to the smartphone app.

(2) During the first provisioning, the app and the Claiming Service authenticate each
other’s identity. Once the authentication is successful, the receiving server issues a
node ID, which is then forwarded by the app to ESP32-C3.

(3) ESP32-C3 generates a CSR with the CN field set as the node ID. Then, the CSR is
forwarded by the app to the Claiming Service.

(4) The Claiming Service verifies the CSR and issues the certificate, which is then for-
warded by the app to ESP32-C3.

The node ID serves not only as a means of identifying a node during certificate application
but also as a way to map to a user and filter MQTT messages. For example, a node can only
subscribe to topics with a specific prefix (node/<node_id>/*) and publish messages to
those topics.

238 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

ESP RainMaker defines some default messages, including configuration messages, control
messages, status messages, initial status messages, mapping messages, OTA upgrade mes-
sages, and warning messages. These messages are packaged in JSON and sent to the cloud
backend over MQTT.

The configuration message is published by nodes through node/<node_id>/config. It
contains information about the node itself, its attributes, devices, device attributes, services,
and parameters. Here is an example.
1. //Configuration message for led_light

2. {

3. "node_id": "xxxxxxxxxx", //Node ID

4. "config_version": "2020-03-20", //Configuration version

5. "info": { //Node information

6. "name": "ESP RainMaker Device",

7. "fw_version": "1.0",

8. "type": "Lightbulb",

9. "model": "led_light"

10. },

11. "devices": [//Devices of this node

12. {

13. "name": "Light",

14. "type": "esp.device.lightbulb",

15. "primary": "Power",

16. "params": [//Device parameters

17. {

18. "name": "Name",

19. "type": "esp.param.name",

20. "data_type": "string",

21. "properties": ["read", "write"]

22. },

23. {

24. "name": "Power",

25. "type": "esp.param.power",

26. "data_type": "bool",

27. "properties": ["read", "write"],

28. "ui_type": "esp.ui.toggle"

29. },

30.

31.]

32. }

33.],

34. "services": [//Node services

35. {

36. "name": "OTA",

37. "type": "esp.service.ota",

38. "params": [

Chapter 9. Cloud Control 239

39. {

40. "name": "Status",

41. "type": "esp.param.ota_status",

42. "data_type": "string",

43. "properties": ["read"]

44. }

45.

46.]

47. }

48.]

49. }

The smartphone app can obtain the unique identifier of the product by parsing node_id, the
device information and number by parsing devices, the services by parsing the services,
and the read and write permissions of the app by parsing properties. If ui_type of
params in devices is set, the app will display the corresponding UI. For more information
on the use of standard parameters, standard devices, and standard UI, please refer to Section
9.4.7.

The downlink control message is used the app and third-party applications to control nodes.
It contains device parameters that need to be updated. To receive such messages, a node
needs to subscribe to the topic node/<node_id>/remote. Here is an example of control
messages.
1. {

2. "Light": {

3. "Power": false

4. }

5. }

A node can actively report its status messages through the topic node/<node_id>/params
/local. The cloud backend will cache the parameters in the message and push them to the
clients that have enabled the push function.

The mapping message is used to map nodes to users. An unmapped node needs to be
mapped to a user first to ensure that only that user has access to it. The mapping request
occurs during the Wi-Fi configuration phase. During Wi-Fi provisioning, the device receives
the user ID and security key from the smartphone. Once the node is connected to the cloud
backend, it will concatenate the user ID and security key with its own node ID and send
them to the cloud backend. Here is an example of mapping messages.
1. {

2. "node_id": "112233AABBCC",

3. "user_id": "02e95749-8d9d-4b8e-972c-43325ad27c63",

4. "secret_key": "9140ef1d-72be-48d5-a6a1-455a27d77dee"

5. }

After receiving the above message, the cloud backend will check whether it receives the

240 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

same security key from the app. If yes, it will map the user to the device. The mapping
process is shown in Figure 9.8.

Figure 9.8. Mapping process

The OTA upgrade message is used to implement OTA upgrades for nodes. It uses three MQTT
topics: node/<node_id>/otafetch, node/<node_id>/status, and node/<node_

id>/otaurl. These topics respectively report OTA upgrade status, distribute OTA upgrade
firmware, and query OTA upgrade tasks. The code is as follows:
1. //Distribute OTA upgrade firmware

2. {

3. "url": "<ota_image_url>",

4. "ota_job_id": "<ota_job_id>",

5. "file_size": "<num_bytes>"

6. }

7.

8. //Query OTA upgrade tasks

9. {

Chapter 9. Cloud Control 241

10. "node_id": "<node_id>",

11. "fw_version": "<fw_version>"

12. }

13.

14. //Report OTA upgrade status

15. {

16. "ota_job_id": "<ota_job_id>",

17. "status": "<in-progress/success/fail>",

18. "additional_info": "<additional_info>"

19. }

The warning message is a type of push messages used to notify and remind users. A node
can publish warning messages via the topic node/<node_id>/alert. After receiving a
warning message, the app pushes it to the smartphone notification bar. All the data in the
cloud backend have push properties, and the use of this topic explicitly marks the data as a
notification that needs to be actively pushed to the smartphone’s notification bar. Here is an
example of warning messages.

1.

2. "esp.alert.str": "alert"

3.

9.4.3 Communication between Client and Cloud Backend

ESP RainMaker offers two client tools: app and CLI, both of which are implemented using
the RESTful API. This section briefly explains how to use the CLI tool that comes with the
device SDK to communicate with the cloud backend.

The CLI tool is a Python-based submodule of the esp-rainmaker repository, under the esp-
rainmaker/cli directory. To use it, please refer to Chapter 4 to set up the ESP-IDF envi-
ronment and export the ESP-IDF environment variables. You can verify whether the ESP-IDF
and Python environments are ready by running the following commands:

Print ESP-IDF version

$ idf.py --version
ESP-IDF v4.3.2

Print Python version

$ python3 --version
Python 3.6.9

A similar Shell output to the above indicates that the ESP-IDF environment is ready. Note
that the CLI tool depends on Python 3.x, and the older versions need upgrading.

After the ESP-IDF environment is ready, use pip to install the Python dependencies of the
CLI tool with the following commands:

$ cd your RainMaker path/esp-rainmaker/cli
$ pip install -r requirements.txt

242 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Collecting argparse

Using cached argparse-1.4.0-py2.py3-none-any.whl (23 kB)

...

...

...

Installing collected packages: cryptography, argparse

Attempting uninstall: cryptography

Found existing installation: cryptography 2.9.2

Uninstalling cryptography-2.9.2:

Successfully uninstalled cryptography-2.9.2

Successfully installed argparse-1.4.0 cryptography-2.4.2

WARNING: You are using pip version 21.1.2; however, version 21.3.1 is available.

Once the environment is set up, you can use the CLI tool to communicate with the cloud
backend. All the commands supported by the CLI are listed in Table 9.4, and you can view
the usage of each command by running python3 rainmaker.py {h. Additionally, you
can use the parameter -h together with each command to view more help information.

Table 9.4. CLI commands

Command Description

signup Sign up for ESP RainMaker

login Login to ESP RainMaker

logout Logout current (logged-in) user

forgotpassword Reset the password

getnodes List all nodes associated with the user

getnodeconfig Get node configuration

getnodestatus Get online/offline status of the node

setparams Set node parameters

getparams Get the last parameter of the node in the cloud

removenode Remove user node mapping

provision Provision the node to join Wi-Fi network

getmqtthost Get the address of the MQTT host that the node connects to

claim Perform host driven claimming to the node and get the MQTT cerficate

test Test whether the node has been mapped to the user

otaupgrade Distribute OTA upgrade information

getuserinfo Get detailed information of the logged-in user

sharing Share the node

Chapter 9. Cloud Control 243

The claim command in the CLI tool is for host driven claiming, which is no longer supported
in ESP32-C3. Instead, the more convenient Self Claiming is supported in ESP32-C3.

Before using any other command, you need to first run the signup command to sign up for
an ESP RainMaker account:
$ cd your RainMaker path/esp-rainmaker/cli
$ cd python3 rainmaker.py signup someone@example.com
Choose a password

Password :

Confirm Password :

Enter verification code sent on your Email.

Verification Code : 973854

Signup Successful

Please login to continue with ESP Rainmaker CLI

Check the verification code in your email, as shown in Figure 9.9.

Figure 9.9. Verification code in email

Then, log in.

Execute the login command, and the Shell will open a web page, as shown in Figure 9.10.
Enter your account and password in the box.

244 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 9.10. Log in to ESP RainMaker using web browser

Alternatively, you can enter the command login together with the parameter -email to
directly log in using CLI:

$ python3 rainmaker.py login --email someone@example.com
Password:

Login Successful

9.4.4 User Roles

As mentioned earlier, user-node mapping aims to ensure that each node is controlled by a
unique user. There are two types of users in ESP RainMaker: admin users and end users.

Admin user:
a user who owns the MQTT certificate of a given node or gets the certificate through
claiming service. Admin users can access nodes via the ESP RainMaker dashboard, push
OTA firmware updates, and use ESP Insight for remote monitoring, but cannot read or
write node parameters.

End user:
a user who has the control permissions to a given node. End users can set and obtain node
parameters and configuration but cannot view nodes via the ESP RainMaker dashboard.
They are subdivided into primary users and secondary users.

Primary user:
a user who last performs the user-node mapping. Primary users can access node con-
figuration, read/write node parameters, and add/remove/view other secondary users.

Chapter 9. Cloud Control 245

Secondary user:
any user who gets access to a node via node sharing. Secondary users can access node
configuration and read/write node parameters, but cannot add/remove/view other sec-
ondary users.

9.4.5 Basic Services

ESP RainMaker services are practical examples that integrate specific functions to facilitate
secondary development and enrich the functionality of nodes. For example, the scheduling
service provides devices with the offline timing/countdown function; the system service
offers the remote reboot and factory reset functions; the time & time zone service enables
the time zone switching function; the OTA upgrade service provides the remote update
function; and the local control service allows fast, stable, and secure LAN communication.
These services can be quickly implemented with simple configuration.

1. Time & time zone service

Fetching time is one of the most critical tasks for an IoT device after connecting to the
Internet, especially when the scheduling service is enabled. In ESP RainMaker, there are
two important concepts: time and time zone.

Time is typically fetched using Simple Network Time Protocol (SNTP). The ESP RainMaker
SDK provides an abstraction layer over the SNTP component in ESP-IDF, making it easy for
you to synchronise and check time. The code is as follows:
1. /*Initialise time synchronisation. This will call the SNTP component internally and
2. set the SNTP server through sntp_server_name passed by esp_rmaker_time_config_t*/
3. esp_err_t esp_rmaker_time_sync_init(esp_rmaker_time_config_t *config);
4.
5. //Check if time has been synchronised by comparison with the standard time 1546300800
6. bool esp_rmaker_time_check(void);
7.
8. //Wait for time to be synchronised
9. esp_err_t esp_rmaker_time_wait_for_sync(uint32_t ticks_to_wait);

As countries and regions in different longitudes have different local times and time zones,
the TZ environment variable and the tz_set() function are provided by ESP-IDF to set the
time zone. RainMaker provides an abstraction layer over this and provides multiple ways of
setting it. For example:

(1) Using the C API.
1. //Set time zone using the timezone region string

2. esp_err_t esp_rmaker_time_set_timezone(const char *tz);

3.

4. //Set time zone using the POSIX format

5. esp_err_t esp_rmaker_time_set_timezone_posix(const char *tz_posix);

(2) Modifying Default Timezone in menuconfig. To use this method, you need to have

246 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

some basic understanding of ESP-IDF. For more information, please refer to Chapter 4. The
configuration for this method is as follows:
(Top) → Component config → ESP RainMaker Common

Espressif IoT Development Framework Configuration

...

(Asia/Shanghai) Default Timezone

...

(3) Setting time zone directly on the client side via the time zone service. To enable this
service, call the following function on the device side:

1. esp_err_t esp_rmaker_timezone_service_enable(void);

2. Scheduling service

The scheduling service performs periodic modifications to device parameters. For example,
if you need to turn on a light at 7pm and turn it off at 11pm every day, this service can spare
you from manually turning it on and off. After configured, this service runs independently
on the device and does not rely on the network, which means that the device can perform
the configured operation correctly even when the device is disconnected from the network.
To enable this service, call the following function on the device side:

1. esp_err_t esp_rmaker_schedule_enable(void);

3. OTA upgrade service

ESP RainMaker provides the OTA upgrade service to update firmware. You only need to call
a simple API to enable it. There are two methods of performing OTA upgrade.

(1) OTA upgrade using parameters. This is the simplest way for developers to upgrade
firmware OTA. You only need to upload the firmware to any secure web server and provide
the URL to the node. This method can be triggered from the ESP RainMaker CLI client. The
otaupgrade command in the CLI tool is used to complete the upgrade, as shown below:
1. esp_rmaker_ota_config_t ota_config = {

2. .server_cert = ESP_RMAKER_OTA_DEFAULT_SERVER_CERT,

3. };

4. esp_rmaker_ota_enable(&ota_config, OTA_USING_PARAMS);

(2) OTA upgrade using MQTT topics. This is a more advanced method available to admin
users to upgrade firmware OTA. They need to upload the firmware to the dashboard and
create a task there to enable the OTA upgrade. The device will receive the OTA upgrade
URL and report the upgrade progress over MQTT. The code is as follows:
1. esp_rmaker_ota_config_t ota_config = {

2. .server_cert = ESP_RMAKER_OTA_DEFAULT_SERVER_CERT,

3. };

4. esp_rmaker_ota_enable(&ota_config, OTA_USING_TOPICS);

Chapter 9. Cloud Control 247

4. Local control service

Besides remote control, ESP RainMaker also enables the client to locally control the nodes
that are on the same Wi-Fi network as the client. This makes the entire process of control
and response faster and more reliable. ESP-IDF provides a component called ESP Local
Control, which uses mDNS-based discovery and HTTP-based control. It is now integrated
into the ESP RainMaker SDK.

Local control does not require adding a service to the node configuration message. It protects
data using asymmetric encryption algorithms and transmits the Proof of possession (PoP) to
the app through the local control service. The smartphone app completes encryption using
the PoP.
Enable local control

CONFIG_ESP_RMAKER_LOCAL_CTRL_ENABLE=y

Enable local control encryption

CONFIG_ESP_RMAKER_LOCAL_CTRL_SECURITY_1=y

5. System service

ESP RainMaker presets a set of system services for factory reset and remote reboot. Smart-
phone apps can use these services to erase the network configuration information on the
device and unmap users from the devices. To enable this service, call the following API on
the device side:

1. esp_err_t esp_rmaker_system_service_enable(esp_rmaker_system_serv_config_t *config)

9.4.6 Smart Light Example

The RainMaker SDK is built on top of ESP-IDF and provides simple APIs for building applica-
tions based on the ESP RainMaker specification. This section will explain and run the smart
light example. The code is as follows:
1. esp_rmaker_device_t *light_device;

2. //Callback function to handle commands received from ESP RainMaker

3. static esp_err_t write_cb(const esp_rmaker_device_t *device,

4. constesp_rmaker_param_t *param,

5. const esp_rmaker_param_val_t val,

6. void *priv_data,

7. esp_rmaker_write_ctx_t *ctx)

8. {

9. if (ctx) {

10. ESP_LOGI(TAG,

11. "Received write request via : %s",

12. esp_rmaker_device_cb_src_to_str(ctx->src));

13. }

14. const char *device_name = esp_rmaker_device_get_name(device);

248 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

15. const char *param_name = esp_rmaker_param_get_name(param);

16. if (strcmp(param_name, ESP_RMAKER_DEF_POWER_NAME) == 0) {

17. ESP_LOGI(TAG,

18. "Received value = %s for %s - %s",

19. val.val.b? "true" : "false",

20. device_name,

21. param_name);

22. app_light_set_power(val.val.b);

23. } else if (strcmp(param_name, ESP_RMAKER_DEF_BRIGHTNESS_NAME) == 0) {

24. ESP_LOGI(TAG,

25. "Received value = %d for %s - %s",

26. val.val.i,

27. device_name,

28. param_name);

29. app_light_set_brightness(val.val.i);

30. } else if (strcmp(param_name, ESP_RMAKER_DEF_HUE_NAME) == 0) {

31. ESP_LOGI(TAG,

32. "Received value = %d for %s - %s",

33. val.val.i,

34. device_name,

35. param_name);

36. app_light_set_hue(val.val.i);

37. } else if (strcmp(param_name, ESP_RMAKER_DEF_SATURATION_NAME) == 0) {

38. ESP_LOGI(TAG,

39. "Received value = %d for %s - %s",

40. val.val.i,

41. device_name,

42. param_name);

43. app_light_set_saturation(val.val.i);

44. } else {

45. //Omit parameters that do not need processing

46. return ESP_OK;

47. }

48. esp_rmaker_param_update_and_report(param, val);

49. return ESP_OK;

50. }

51.

52. void app_main()

53. {

54. //Initialise the driver layer

55. app_driver_init();

56.

57. //Initialise the NVS partition

58. esp_err_t err = nvs_flash_init();

59. if (err == ESP_ERR_NVS_NO_FREE_PAGES || err ==

60. ESP_ERR_NVS_NEW_VERSION_FOUND) {

Chapter 9. Cloud Control 249

61. ESP_ERROR_CHECK(nvs_flash_erase());

62. err = nvs_flash_init();

63. }

64. ESP_ERROR_CHECK(err);

65.

66. //Initialise Wi-Fi

67. app_wifi_init();

68.

69. //Initialise ESP RainMaker Agent

70. esp_rmaker_config_t rainmaker_cfg = {

71. .enable_time_sync = false,

72. };

73. esp_rmaker_node_t *node = esp_rmaker_node_init(&rainmaker_cfg,

74. "ESP RainMakerDevice",

75. "Lightbulb");

76. if (!node) {

77. ESP_LOGE(TAG, "Could not initialise node. Aborting!!!");

78. vTaskDelay(5000/portTICK_PERIOD_MS);

79. abort();

80. }

81.

82. //Create the device and add parameters

83. light_device = esp_rmaker_lightbulb_device_create("Light",

84. NULL,

85. DEFAULT_POWER);

86. esp_rmaker_device_add_cb(light_device, write_cb, NULL);

87. esp_rmaker_device_add_param(light_device,

88. esp_rmaker_brightness_param_create(

89. ESP_RMAKER_DEF_BRIGHTNESS_NAME,

90. DEFAULT_BRIGHTNESS));

91. esp_rmaker_device_add_param(light_device, esp_rmaker_hue_param_creat(

92. ESP_RMAKER_DEF_HUE_NAME,

93. DEFAULT_HUE));

94. esp_rmaker_device_add_param(light_device,

95. esp_rmaker_saturation_param_create(

96. ESP_RMAKER_DEF_SATURATION_NAME,

97. DEFAULT_SATURATION));

98. esp_rmaker_node_add_device(node, light_device);

99.

100. //Enable OTA upgrade

101. esp_rmaker_ota_config_t ota_config = {

102. .server_cert = ota_server_cert,

103. };

104. esp_rmaker_ota_enable(&ota_config, OTA_USING_PARAMS);

105.

106. //Enable time & time zone service

250 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

107. esp_rmaker_timezone_service_enable();

108.

109. //Enable scheduling service

110. esp_rmaker_schedule_enable();

111.

112. //Enable ESP Insight

113. app_insights_enable();

114.

115. //Enable ESP RainMaker Agent

116. esp_rmaker_start();

117.

118. //Enable Wi-Fi

119. err = app_wifi_start(POP_TYPE_RANDOM);

120. if (err != ESP_OK) {

121. ESP_LOGE(TAG, "Could not start Wifi. Aborting!!!");

122. vTaskDelay(5000/portTICK_PERIOD_MS);

123. abort();

124. }

125.}

Firstly, the above example initialises the hardware driver by configuring GPIO and initialising
peripherals. Next, the NVS partition is initialised in preparation for reading data from the
flash. The partition table partitions.csv is as follows:
1. # Name, Type, SubType, Offset, Size, Flags

2. # Note: Firmware partition offset needs to be 64K aligned, initial 36K (9

3. sectors) are reserved for bootloader and partition table

4. sec_cert, 0x3F, , 0xd000, 0x3000, ,

5. nvs, data, nvs, 0x10000, 0x6000,

6. otadata, data, ota, , 0x2000

7. phy_init, data, phy, , 0x1000,

8. ota_0, app, ota_0, 0x20000, 1600K,

9. ota_1, app, ota_1, , 1600K,

10. fctry, data, nvs, 0x340000, 0x6000

As shown in the above partition table, there are two NVS partitions in this example project:
nvs and fctry. The former is used to store network configuration and local scheduling
information and the latter is used to store certificate information.

Then, Wi-Fi is initialised. This step must be performed before the esp_rmaker_node_
init() function is called. If the fctry partition does not contain a certificate, Assisted
Claiming will be enabled because the MAC address can be used as the initial node ID when
Wi-Fi is initialised. Afterward, the device model is created and the callback function is
added. All cloud downlink data will be transmitted through this callback function, and
the ESP RainMaker core task is started. Finally, Wi-Fi is enabled. If the device has not
been connected to Wi-Fi, the provisioning application will be automatically started. The
application is implemented using the wifi_provisioning component in ESP-IDF and

Chapter 9. Cloud Control 251

started by calling app_wifi_start() in the ESP RainMaker SDK.

Run idf.py to compile and flash the led_light project and idf.py monitor to open
the monitor, and then you will see the following log:
I (30) boot: ESP-IDF v4.3.2-dirty 2nd stage bootloader

...

...

...

I (488) cpu_start: Starting scheduler.

I (493) gpio: GPIO[9]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 1|

Pulldown: 0| Intr:3

I (503) coexist: coexist rom version 9387209

I (503) pp: pp rom version: 9387209

I (503) net80211: net80211 rom version: 9387209

I (523) wifi:wifi driver task: 3fca4d8c, prio:23, stack:6656, core=0

I (523) system_api: Base MAC address is not set

I (523) system_api: read default base MAC address from EFUSE

...

...

...

I (623) esp_rmaker_work_queue: Work Queue created.

I (623) esp_claim: Initialising Assisted Claiming. This may take time.

W (633) esp_claim: Generating the private key. This may take time.

I (110533) esp_rmaker_node: Node ID ----- 7CDFA161BE38

I (21213) esp_rmaker_node: Node ID ----- 7CDFA1C21DA0

I (21213) esp_rmaker_ota: OTA state = 2

I (21213) esp_rmaker_ota_using_params: OTA enabled with Params

I (21223) esp_rmaker_time_service: Time service enabled

I (21223) esp_rmaker_time: Initializing SNTP. Using the SNTP server: pool.ntp.org

I (21233) app_insights: Enable CONFIG_ESP_INSIGHTS_ENABLED to get Insights.

I (21243) esp_rmaker_core: Starting RainMaker Work Queue task

I (21253) esp_rmaker_work_queue: RainMaker Work Queue task started.

I (21253) esp_claim: Waiting for assisted claim to finish.

...

...

...

I (21623) app_wifi: If QR code is not visible, copy paste the below URL in a browser.

https://rainmaker.espressif.com/qrcode.html?data={"ver":"v1","name":"PROV_8a20

e0","pop":"827e49ae","transport":"ble"}

I (21633) app_wifi: Provisioning Started. Name : PROV_8a20e0, POP : 827e49ae

252 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Use the smartphone app to scan the QR code. If no certificate is present in the fctry

partition, Assisted Claiming will be enabled, as shown in Figure 9.11.

Figure 9.11. Interface for enabling Assisted Claiming

...

...

I (444493) esp_claim: Assisted Claiming Started.

I (447603) esp_rmaker_core: New Node ID ----- nq8xT6p53BZHTm6k8AZqN

I (472813) esp_claim: Assisted Claiming was Successful.

After the certificate is obtained, the device enters the network configuration phase. The
smartphone app will send the selected SSID and password to the device, which will then
attempt to connect to the router and the cloud, as shown in Figure 9.12.
...

...

I (491113) esp_rmaker_user_mapping: Received request for node details

I (491113) esp_rmaker_user_mapping: Got user_id = 764865be-e49f-49d1-afa1-696d6

a7e3233, secret_key = a3c89473-514f-4aa4-a190-a9aa38e7a9d8

I (491123) esp_rmaker_user_mapping: Sending status SUCCESS

I (491753) app_wifi: Received Wi-Fi credentials

SSID : Xiaomi_32BD

Password : 12345678

I (495173) wifi:new:<11,0>, old:<1,0>, ap:<255,255>, sta:<11,0>, prof:1

I (495753) wifi:state: init -> auth (b0)

I (495793) wifi:state: auth -> assoc (0)

I (495833) wifi:state: assoc -> run (10)

I (495973) wifi:connected with Xiaomi_32BD, aid = 2, channel 11, BW20, bssid =

88:c3:97:9e:32:be

I (495973) wifi:security: WPA2-PSK, phy: bgn, rssi: -25

I (495983) wifi:pm start, type: 1

Chapter 9. Cloud Control 253

I (495983) wifi:set rx beacon pti, rx_bcn_pti: 14, bcn_timeout: 14, mt_pti:

25000, mt_time: 10000

I (496043) wifi:BcnInt:102400, DTIM:1

W (496573) wifi:<ba-add>idx:0 (ifx:0, 88:c3:97:9e:32:be), tid:0, ssn:2, winSize:64

I (497503) app_wifi: Connected with IP Address:192.168.31.65

I (497503) esp_netif_handlers: sta ip: 192.168.31.65, mask: 255.255.255.0, gw:

192.168.31.1

I (497503) wifi_prov_mgr: STA Got IP

I (497503) app_wifi: Provisioning successful

I (497513) esp_mqtt_glue: Initialising MQTT

I (500973) esp_mqtt_glue: MQTT Connected

After completing the configuration and successfully connecting to the cloud, the device will
send a user-node association message, and the app will continue to check the association
status, as shown in Figure 9.13.

Figure 9.12. Device con-
necting to router and cloud

Figure 9.13. Check-
ing association status

I (45959) esp_rmaker_user_mapping: User Node association message published
successfully.

After the association, you can check this node using CLI.

254 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

9.4.7 RainMaker App and Third-Party Integrations

In Section 9.4.6, we have completed the device provisioning and user-node mapping, en-
abling control of a smart light through the app. As a result, the smart light icon and UI
interface are now displayed on the app’s homepage. The standard parameters, devices, and
UIs mentioned earlier are defined by ESP RainMaker and form the basis of its standard
framework. By using this framework, the app can accurately manage each device’s parame-
ters and supported services. These standard items, which are listed in the tables below, are
also applicable to third-party platforms.

(1) Standard UI device types

Table 9.5. Standard UI device types

Name Type Params GVA Alexa Image

Switch esp.device.switch Name, Power* SWITCH SWITCH

Lightbulb esp.device.lightbulb

Name, Power*,

Brightness, Color

Temperature,

Hue, Saturation,

Intensity

LIGHT LIGHT

Light esp.device.light

Name, Power*,

Brightness, Color

Temperature,

Hue, Saturation,

Intensity

LIGHT LIGHT —

Fan esp.device.fan
Name, Power*,

Speed, Direction
FAN FAN

Temperature

Sensor

esp.device.temperature-

sensor

Name, Tempera-

ture*
— TEMPERATURE SENSOR

Outlet esp.device.outlet Name, Power OUTLET SMARTPLUG

Plug esp.device.plug Name, Power OUTLET SMARTPLUG —

Socket esp.device.socket Name, Power OUTLET SMARTPLUG —

Lock esp.device.lock Name, Lock State LOCK SMARTLOCK

Chapter 9. Cloud Control 255

Continuation of Table 9.5

Name Type Params GVA Alexa Image

Internal

Blinds

esp.device.blinds-

internal
Name BLINDS INTERIOR BLIND —

External

Blinds

esp.device.blinds-

externa
Name BLINDS EXTERIOR BLIND —

Garage Door esp.device.garage-door Name GARAGE GARAGE DOOR —

Garage Lock
esp.device.garage-door-

lock
Name GARAGE SMARTLOCK —

Speaker esp.device.speaker Name SPEAKER SPEAKER —

Air

Conditioner

esp.device.air-

conditioner
Name AC UNIT AIR CONDITIONER —

Thermostat esp.device.thermostat Name THERMOSTAT THERMOSTAT

TV esp.device.tv Name TV TV —

Washer esp.device.washer Name WASHER WASHER —

Other esp.device.other — — OTHER

(2) Standard UI types

The standard UI type added to a parameter is displayed as the corresponding UI shown
in Table 9.6 in the ESP RainMaker app.

Table 9.6. Standard UI types

Name Type Data Types Requirements Sample

Text (Default) esp.ui.text All N/A

Toggle Switch esp.ui.toggle bool N/A

Slider esp.ui.slider int, float Bounds (min, max)

Brightness Slider esp.ui.slider int
Param type =

esp.param.brightness

256 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Continuation of Table 9.6

Name Type Data Types Requirements Sample

CCT Slider esp.ui.slider int Param type = esp.param.cct

Saturation Slider esp.ui.slider int
Param type =

esp.param.saturation

Hue Slider esp.ui.hue-slider int Param type = esp.param.hue

Hue Circle esp.ui.hue-circle int Param type = esp.param.hue

Push button (Big) esp.ui.push-btn-big bool N/A

Dropdown esp.ui.dropdown int/string
Bounds (min/max) for Int

Valid strs for String

Trigger

(Android only)
esp.ui.trigger bool N/A

Hidden

(Android only)
esp.ui.hidden bool N/A Param will be hidden

(3) Standard parameter types

They are mapped to the parameters of corresponding names and UIs in the Alexa and
Google Home apps.

Table 9.7. Standard parameter types

Name Type Data Types UI Type Properties Min, Max, Step

Power esp.param.power bool esp.ui.toggle Read, Write N/A

Brightness esp.param.brightness int esp.ui.slider Read, Write 0, 100, 1

CCT esp.param.cct int esp.ui.slider Read, Write 2700, 6500, 100

Hue esp.param.hue int esp.ui.slider Read, Write 0, 360, 1

Saturation esp.param.saturation int esp.ui.slider Read, Write 0, 100, 1

Chapter 9. Cloud Control 257

Continuation of Table 9.7

Name Type Data Types UI Type Properties Min, Max, Step

Intensity esp.param.intensity int esp.ui.slider Read, Write 0, 100, 1

Speed esp.param.speed int esp.ui.slider Read, Write 0, 5, 1

Direction esp.param.direction int esp.ui.dropdown Read, Write 0, 1, 1

Temperature esp.param.temperature float N/A Read N/A

OTA URL esp.param.ota url string N/A Write N/A

OTA Status esp.param.ota status string N/A Read N/A

OTA Info esp.param.ota info string N/A Read N/A

Timezone esp.param.tz string N/A Read, Write N/A

Timezone POSIX esp.param.tz posix string N/A Read, Write N/A

Schedules esp.param.schedules array N/A Read, Write, Persist N/A

Reboot esp.param.reboot bool N/A Read, Write N/A

Factory-Reset
esp.param.factory-

reset
bool N/A Read, Write N/A

Wi-Fi-Reset esp.param.wifi-reset bool N/A Read, Write N/A

Toggle Controller esp.param.toggle bool Any type applicable Read, Write N/A

Range Controller esp.param.range int/float Any type applicable Read, Write App Specific

Mode Controller esp.param.mode string esp.ui.dropdown Read, Write N/A

Setpoint

Temperature

esp.param.setpoint-

temperature
int/float Any type applicable Read/Write N/A

Lock State esp.param.lockstate bool Any type applicable Read/Write N/A

Blinds Position
esp.param.blinds-

position
int esp.ui.slider Read/Write 0, 100, 1

Garage Position
esp.param.garage-

position
int esp.ui.slider Read/Write 0, 100, 1

Light Mode esp.param.light-mode int
esp.ui.dropdown/

esp.ui.hidden
Read/Write

0, 2, 1

0:invalid

1:HSV

2:CCT

AC Mode esp.paran.ac-mode string esp.ui.dropdown Read/Write N/A

258 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

(4) Standard service types

They are only used to quickly create services in the ESP RainMaker SDK.

Table 9.8. Standard service types

Name Type Params

OTA esp.service.ota OTA URL, OTA Status, OTA Info

Schedule esp.service.schedules Schedules

Time esp.service.time TZ, TZ-POSIX

System esp.service.system Reboot, Factory-Reset, Wi-Fi-Reset

On the Skill page of Alexa or the Google Service Compatibility page of Google Home, sync
your ESP RainMaker devices. Link to your ESP RainMaker account. Then, you can use the
two apps to control the devices and use voice commands to operate them.

Figure 9.14 displays the ESP RainMaker devices in Alexa. They can be controlled using voice
commands such as “Alexa, please turn on the light”.

NOTE

Learn more about Alexa Skill at https://www.amazon.com/Espressif-Systems-ESP-Rain
Maker/dp/B0881W7RPV/.

Figure 9.14. ESP RainMaker devices in Alexa

Chapter 9. Cloud Control 259

https://www.amazon.com/Espressif-Systems-ESP-RainMaker/dp/B0881W7RPV/
https://www.amazon.com/Espressif-Systems-ESP-RainMaker/dp/B0881W7RPV/

Figure 9.15 displays the ESP RainMaker devices in the Google Home. They can be controlled
using voice commands such as “Hey Google, please turn off the light”.

Figure 9.15. ESP RainMaker devices in Google Home

ESP RainMaker builds an intermediate layer in the cloud backend. This layer maps the
standard parameter types and device types that are built into firmware to the formats that
Alexa Skill and Google Assistant can understand. Therefore, device types in ESP RainMaker,
such as smart lights and switches, are mapped to similar device types in Alexa Skill and
Google Assistant, and their parameters, such as switch, brightness, and color, are mapped
to corresponding capabilities and traits. If you only set brightness, you will get a smart light
with adjustable brightness in Alexa and Google Home. If you also include color and CCT,
you can adjust its color and color temperature.

9.5 Summary
In this chapter, we introduced remote control and the MQTT protocol. It is a commonly used
protocol in remote control and connection of IoT devices to the cloud. It is now adopted
by many mainstream cloud platforms, such as Amazon Cloud, Alibaba Cloud, Baidu Cloud,
Tencent Cloud, and ESP RainMaker introduced in this chapter. This simple and lightweight
protocol provides reliable network services for IoT devices in low-bandwidth and unstable
network environments.

Besides, we also covered how to build an MQTT broker locally to simulate the cloud plat-
form, and how to generate server and client certificates for the TLS protocol handshake to
ensure data security.

260 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

In the practice in this chapter, we took the development of a smart light product as an
example to complete the remote control of devices using the ESP RainMaker platform over
MQTT. Self Claiming is used to obtain certificates. Multiple sets of MQTT topics are used
for device control, user-node mapping, and device status. The built-in basic services can
perform the scheduling operation and OTA upgrade. With the completed cloud connection
function of ESP RainMaker, smart lights can quickly be given voice control capabilities.

ESP RainMaker’s capabilities are not limited to this. Data collection and analysis, device-to-
device linkage, and third-party scene triggers are all interesting functions yet not mentioned
in this chapter. With these cloud functions, we can roughly calculate power consumption by
counting the online/offline time and frequency of smart lights and found out how they work
together with other hardware. These functions can be achieved using the open RESTful API.
Chapter 10 will introduce the use of the RESTful API and use them to develop a smartphone
app.

Chapter 9. Cloud Control 261

Chapter
10

Smartphone App Development

In Chapter 9, we introduced how to control devices through the cloud using Wi-Fi technolo-
gies, as well as how to communicate with the cloud using MQTT protocol and TLS protocol
to ensure data security and validity.

In this chapter, we will learn to develop our own smartphone application to wirelessly con-
trol the smart lights. It should enable users to connect smart home devices with the control
system based on Wi-Fi, Bluetooth, and other wireless communication technologies, so as
to control these devices and transfer data easily even if they are thousands of miles away.
It depends on network and data and obtains detailed information of devices through the
smartphone.

In daily life, we may simply send commands to the built-in Wi-Fi module in home appliances
through wireless network to implement corresponding control, such as switching on/off a
smart light, or setting its color or brightness.

10.1 Introduction to Smartphone App Development
In the Practice section of Chapter 9, we explained how to use ESP RainMaker client to
wirelessly control the Smart Light project. In this chapter, we will turn to its smartphone
app and present its development process in detail.

The app project is available for both iOS and Android. It is an end-to-end solution provided
by Espressif to remotely control and monitor IoT devices based on Espressif chips without
any configuration required in the cloud.

Source code

The source code of the iOS app is stored in the book-esp32c3-iot-projects/
phone app/app ios directory. The source code of the Android app is stored in the
book-esp32c3-iot-projects/phone app/app android directory.

Don’t worry if you have not developed any Android or iOS apps before. In this chapter,
we will elaborate on how to develop a smartphone app starting from creating a new app
project. After you have a basic understanding of Android and iOS application development,

262

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/phone_app/app_ios
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/phone_app/app_ios
https://github.com/espressif/book-esp32c3-iot-projects/tree/main/phone_app/app_android

we will dive deeper into the main features of this open-source project.

10.1.1 Overview of Smartphone App Development

The smartphone app for controlling smart lights includes both iOS and Android versions.
The iOS version is developed in Xcode and written in Swift, whereas the Android version
is developed in Android Studio and programmed in Java. In this chapter, we will first
make prototype diagrams according to requirement documents and API documents, then
design interfaces and interactions, and finally implement the design for each interface based
on prototype diagrams. We will use Git to manage codes, get updated versions, compare
versions, and commit changes.

The implementation of the smartphone app requires permission to access the smartphone’s
camera, local network, location, Bluetooth, etc. It is based on network request, ESP Pro-
vision SDK for provisioning, data parsing, pop-ups, and other third-party frameworks, and
involves the development of functions such as device list, scheduling, user centre, login and
registration.

In the following sections, we will introduce the project structure and the lifecycle of the
smartphone app in Android and iOS, so that you can develop apps more easily with a pre-
liminary understanding.

10.1.2 Structure of the Android Project

This section takes MyRainmaker App as an example to introduce the structure of an Android
project. There are two folders in the root directory, namely app and Gradle

Scripts. The app folder contains all the code and resources to develop the smartphone
app, and the Gradle Scripts folder contains scripts related to Gradle compilation. The
structure of this Android project is shown in Figure 10.1.

App folder
The app folder contains three subfolders: manifests, java, and res.
• manifests: Stores app configurations, including name, version, SDK, and permis-

sions.
• java: Mainly stores source code and test code.
• res: Stores all project resources.

Gradle Scripts folder
The Gradle Scripts folder contains build.gradle (two files with the same name),
gradle-wrapper.properties, proguard-rules.pro, gradle.properties,
settings.gradle, and local.properties.

• build.gradle: Compiles the app with Gradle.
• gradle-wrapper.properties: Configures the Gradle version.

Chapter 10. Smartphone App Development 263

Figure 10.1. Structure of the Android project

• proguard-rules.pro: Configures proguard rules to obfuscate the code.
• gradle.properties: Configures Gradle-related global properties.
• settings.gradle: Configures relevant Gradle scripts.
• local.properties: Configures the path to the SDK/NDK.

10.1.3 Structure of the iOS Project

This section takes MyRainmaker Apps an example to introduce the structure of an iOS
project. As the navigation view shows in Figure 10.2, the project includes a MyRainmaker
folder for source code, a MyRainmakerTests folder for unit test code, and a MyRainma-
kerUITests folder for UI test code.

MyRainmaker folder
This folder contains the AppDelegate, SceneDelegate, ViewController, Main,
Assets, LaunchScreen, and Info files.

• AppDelegate: The entry file of the entire app, which stores the app’s delegate class.
• SceneDelegate: New class added to Xcode 11 that handles scenes split from Ap-

pDelegate.
• ViewController: Host controller class that controls view display and handles touch

events, etc.
• Main: The main interface storyboard, which contains view controller scenes in the

app and describes the connection between multiple view controllers.
• Assets: The file that stores most images.
• LaunchScreen: Configures the app’s launch screen.
• Info: Configures app permissions, such as Bluetooth, location, and camera permis-

sions.

264 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 10.2. Structure of the iOS project

Test files
MyRainmakerTests, MyRainmakerUITests, and MyRainmakerUITestsLaunch-

Tests are all test classes. They are not commonly used in project development, and thus
are not explained in detail.

10.1.4 Lifecycle of an Android Activity

Android has four basic components – Activity, Service, ContentProvider, and BroadcastRe-
ceiver, among which Activity is used very frequently and handles almost all interface inter-
actions. Now, let’s explore the lifecycle of an activity following the Figure 10.3.

• onCreate() indicates that the activity is being created. It is the first method through
an activity’s lifecycle and is where you should do the initialization.

• onStart() indicates that the activity is being started and is visible to users.

• onRestart() indicates that the activity is being restarted, and should be called when
the activity changes from invisible to visible. For example, when users press the Home
button to switch to the desktop, or open a new activity, the current activity will be
stopped. When the current activity returns to the front, the onRestart() method
will be called.

• onResume() indicates that the activity has been created and users can operate and
interact on the interface.

• onPause() indicates that the activity is paused, and usually onStop() will be called
immediately after. If users quickly return to the current activity, onResume() will be

Chapter 10. Smartphone App Development 265

Figure 10.3. Lifecycle of an activity

called.

• onStop() indicates that the activity is about to stop. It is no longer visible to users
and is running only in the background.

• onDestroy() indicates that the activity is about to be destroyed. This is the last
method executed in an activity’s lifecycle and is where you should reclaim or release
resources.

10.1.5 Lifecycle of iOS ViewController

The lifecycle of the ViewController refers to the lifecycle of the views it controls. When the
state of a view changes, the ViewController will automatically call a series of methods in
response to the change. The lifecycle of the ViewController is shown in Figure 10.4.

Each method is used as follows:

• init() initializes relevant, critical data.

• loadView() initializes the view. This method should not be called directly, but auto-
matically by the system.

266 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 10.4. Lifecycle of ViewController

• viewDidLoad() indicates that the view is loaded, but not yet been displayed on the
screen. By overriding this method, you can perform additional initialization on views,
such as removing some views, modifying constraints, loading data, etc.

• viewWillAppear() indicates that the view is about to be displayed on the screen.
You may use this method to change the orientation or style of the status bar.

• viewDidApper() indicates that the view has been displayed on the screen. You may
use this method to modify how the view is presented.

• viewWillDisappear() indicates that the view is about to disappear, be covered, or
be hidden.

• viewDidDisappear() indicates that the view has disappeared, been covered, or
been hidden.

Chapter 10. Smartphone App Development 267

10.2 Creating a New Smartphone App Project
Now that we have learned about the development of Android and iOS project, let’s start
creating a new app project. Since the provisioning function of the app requires a Blue-
tooth module, simulator does not meet the demand. Please prepare a smartphone for the
development and debugging of the app.

Before creating a new smartphone app project, you need to download the corresponding
development tools. IDE tools have integrated all the necessary environments, and do not
require setting environment variables and other tedious work.

10.2.1 Preparing for Android Development

The Android app may be developed on Linux, Mac, or Windows using Android Studio. It
should be targeted at Android 6.0 and above, and can be built with Java and Kotlin.

Kotlin is preferred for developing the Android app. As a JVM-oriented language, it is fully
compatible with Java, and offers more flexible syntax and powerful features. Back in 2017,
Google announced that it would support Kotlin on Android as a first-class language. With
experience in Java development, you can easily get started with Kotlin.

10.2.2 Creating a New Android Project

To create a new Android project, proceed as follows:

After downloading and installing Android Studio on your PC, open it and you should see the
interface as shown in Figure 10.5. Then click “New Project”.

Figure 10.5. Interface of Android Studio

Select “Empty Activity”, click “Next”, and a “New Project” dialog box as Figure 10.6 will pop

268 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

up. Specify the Name of your project (e.g., MyRainmaker) and the Package name, and set
the Save location, the Language (Kotlin), and the Minimum SDK (Android 6.0 and above).
Then click “Finish” to create a new project.

When you create a project for the first time, it may take some time to automatically down-
load all the dependencies, so please be patient.

Figure 10.6. The “New Project” dialog box

10.2.3 Adding Dependencies for MyRainmaker

Add repository to settings.gradle (Project Settings).
1. repositories {

2. ...

3. maven { url ’https://jitpack.io’ }

4. }

Add dependencies to build.gradle (Module: MyRainmaker.app).
1. dependencies {

2. implementation ’org.greenrobot:eventbus:3.2.0’

3. implementation ’com.github.espressif:

4. esp-idf-provisioning-android:lib-2.0.11’

5. implementation ’com.github.espressifApp:rainmaker-proto-java:1.0.0’

6. implementation ’com.google.protobuf:protobuf-javalite:3.14.0’

7. implementation ’com.google.crypto.tink:tink-android:1.6.1’

8. }

Chapter 10. Smartphone App Development 269

Click “Sync Now” or the “ ” (Sync) button in the upper right corner to download the
dependencies, as shown in Figure 10.7.

Figure 10.7. Download dependencies

10.2.4 Permission Request in Android

Add the required permissions to the AndroidManifest.xml file.
1. //Location permissions

2. <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

3. //Bluetooth permissions

4. <uses-permission android:name="android.permission.BLUETOOTH" />

5. <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

6. //Network permissions

7. <uses-permission android:name="android.permission.INTERNET" />

Besides being decalred as static, location permissions should also be requsted in the activity
as follows:
1. registerForActivityResult(ActivityResultContracts.RequestPermission())

2. { granted ->

3. //Result callback

4. if (granted) {

5. //Permission granted

6. } else {

7. //Permission denied

8. }

9. }.launch(android.Manifest.permission.ACCESS_FINE_LOCATION)

Add the code above to the activity’s onCreate() method, so that the app will request
location permissions whenever being launched.

10.2.5 Preparing for iOS Development

The iOS app may be developed on computers runing macOS 10.12 and above using Xcode
(available on App Store). It should be target at iOS 11.0 and above, and can be built with
Swift and Objective-C.

Swift is preferred as it is faster, safer, and more interactive. It removes pointers and other

270 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

unsafe access in Objective-C, and switches from the smalltalk-style syntax used by Objective-
C to dot notation. All the sample code in this chapter is written in Swift.

10.2.6 Creating a New iOS Project

To create a new iOS project, proceed as follows:

After downloading and installing Xcode on your PC, open it, click “Create a new Xcode
project”, select “iOS” → “App” as shown in Figure 10.8, and click “Next”. You should see a
new prompt for your project details.

Figure 10.8. Select “iOS” → “App”

Figure 10.9. Set project details

Chapter 10. Smartphone App Development 271

Set the Product Name (e.g., MyRainmaker), Team, Organization Identifier, Interface, Life
Cycle, and Language (Swift), as shown in Figure 10.9. Click “Next”, and you should see a
prompt for the project’s location. Set the storage path and click “Create”.

10.2.7 Adding Dependencies for MyRainmaker

Open the terminal, navigate to the project directory, and execute the following command to
generate a Podfile.

% touch Podfile

Open the Podfile and add dependencies.
1. # Uncomment the next line to define a global platform for your project

2. platform :ios, ’12.0’

3.

4. target ’ESPRainMaker’ do

5. # Comment the next line if you’re not using Swift and don’t want to

6. use dynamic frameworks

7. use_frameworks!

8.

9. # Pods for ESPRainMaker

10.

11. pod ’MBProgressHUD’, ’˜> 1.1.0’

12. pod ’Alamofire’, ’˜> 5.0.0’

13. pod ’Toast-Swift’

14. pod ’ReachabilitySwift’

15. pod ’JWTDecode’, ’˜> 2.4’

16. pod ’M13Checkbox’

17. pod ’ESPProvision’

18. pod ’DropDown’

19. pod ’FlexColorPicker’

20.

21. end

22.

23. post_install do |installer|

24. .pods_project.targets.each do |target|

25. target.build_configurations.each do |config|

26. config.build_settings[’IPHONEOS_DEPLOYMENT_TARGET’] = ’12.0’

27. end

28. end

29. end

Execute the following command to download dependencies.

% pod install

After download, open the project folder and double-click MyRainmaker.xcworkspace to
open the project, as shown in Figure 10.10.

272 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 10.10. Double-click MyRainmaker.xcworkspace

The structure of the project is shown in Figure 10.11.

Figure 10.11. Structure of the project

10.2.8 Permission Request in iOS

Add the following permissions to info.plist in the MyRainmaker folder.

• key NSBluetoothAlways Usage Description and key NSBluetooth

Peripheral UsageDescription for Bluetooth permission.

• key NSCamera Usage Description for camera permission to scan QR codes.

• key NSLocationWhenInUseUsage Description for location permission. (It is
required for devices running iOS 13 and above to access SSID.)

• key NSLocalNetworkUsageDescription for local network permission. (It is re-
quired for devices running iOS 14 and above to communicate over local network.)

Chapter 10. Smartphone App Development 273

10.3 Analysis of the App’s Functional Requirements
In the previous sections, we have introduced how to create a new app project, along with its
structure and lifecycle. Now, to help you understand the development of app functionalities
more concretely, we have included the source code of the smartphone app project in our
GitHub, and you can import it into Android Studio/Xcode to run for for reference.

The main function of the smartphone app is to configure devices developed based on Espres-
sif’s chips and modules to a designated router, and send commands through the app to con-
trol these devices, such as smart lights and sensors. Another function is to set the device
status at a specified time using the scheduling module, for example, to turn on the water
heater on the way home, so that hot water will be available as soon as you arrive.

Figure 10.12. Functional requirements of the project

274 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

10.3.1 Analysis of the Project’s Functional Requirements

Before developing the app, you should first understand the functional modules and specific
functions to be implemented in this project. The smartphone app project in this chapter
mainly includes modules such as user management, provisioning, and device control (more
functions illustrated in Figure 10.12). The following sections will provide a module-by-
module breakdown.

10.3.2 Analysis of User Management Requirements

User registration and login are implemented in one interface and switched through the
toggle button. The critical part of this module is to allow third-party accounts, and the
network requests for registration, login, verification code acquisition, etc., and data parsing.
The analysis of user management requirements is shown in Figure 10.13.

Figure 10.13. Analysis of user management requirements

• To log in with a third-party account such as GitHub, Apple, or Google, the app will first
open a webpage in the browser and obtain the unique identifier of the account.

• Forgot password and verification code request can be implemented via corresponding
cloud APIs.

• Passwords entered will be displayed by default in ciphertext and can be switched to
plaintext for confirmation by clicking the toggle (eye icon).

• Email addresses entered will be validated using regular expressions.

• Documentation will include documents for the entire project and can be accessed from
various places in the app.

Chapter 10. Smartphone App Development 275

10.3.3 Analysis of Device Provisioning and Binding Requirements

There are two ways to provision a device. One is Bluetooth provisioning, where the app
connects and communicates with the device through Bluetooth, provides provisioning data
for the device, and allows it to join the network. Another way is SoftAP provisioning, where
the device starts a Wi-Fi hotspot for the smartphone to connect and communicate with each
other. Once the device is provisioned, enter PIN to bind the device over cloud. The analysis
of device provisioning and binding requirements is shown in Figure 10.14.

Figure 10.14. Analysis of device provisioning and binding requirements

• For Bluetooth provisioning, the app needs to implement Bluetooth scanning, connec-
tion, subscription, packet transmission and other functions.

• For SoftAP provisioning, the app needs to navigate to the system setting interface,
connect to the device’s Wi-Fi hotspot, and display information about the connected
Wi-Fi hotspot.

• The implementation of device binding after provisioning is the same for both ways and
can be reused.

10.3.4 Analysis of Remote-Control Requirements

Once the device gets provisioned and bound, users will be able to use the smartphone app
to monitor and control it remotely. In addition, users can also control multiple devices at the
same time and create groups to manage them. The analysis of remote-control requirements
is shown in Figure 10.15.

• In the smartphone app, all the provisioned devices will be displayed in a list and can
be turned on/off easily.

276 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 10.15. Analysis of remote-control requirements

• By selecting a specified device, users will enter its independent control interface, which
varies for each device type. For example, it might be used to control switches, bright-
ness, and color.

• The device details interface will show device ID, type, version, location, etc., and allow
users to analyze and unbind devices.

• By creating groups, devices can be controlled and managed together.

10.3.5 Analysis of Scheduling Requirements

Figure 10.16. Analysis of scheduling requirements

The scheduling function is relatively simple, very similar to alarm clocks we use every day. It
mainly includes functions like creating schedules, list of schedule events, editing schedules,

Chapter 10. Smartphone App Development 277

enabling/disabling schedules, etc. The analysis of scheduling requirements is shown in
Figure 10.16. The details of a schedule refer to its event name, date, time, recurring pattern,
etc.

10.3.6 Analysis of User Centre Requirements

The user centre module mainly features user profile, notification, changing password, terms
of use, project documents, privacy policy, voice services, and logout. Note that the chang-
ing password and logout functions need to call the cloud API. The analysis of user centre
requirements is shown in Figure 10.17.

Figure 10.17. Analysis of user centre requirements

10.4 Development of User Management
After going through the analysis of the project’s functional requirements in Section 10.3, you
should already have an overall picture of modules and functions that need to be developed,
as well as the required frameworks and third-party libraries. In this section, we will put all
the modules and functions into code. Based on the new projects and permissions configured
before, now you need to know the classes designed for each interface and associations
between them, in order to achieve better operation through code. The code for each function
would be encapsulated to be reused and modularised.

10.4.1 Introduction to RainMaker APIs

RainMaker cloud supports two types of APIs: Unauthenticated and Authenticated.
Unauthenticated APIs do not have any authentication tokens in the HTTP header and will
receive access_token in the response when users log in successfully. Authenticated APIs
are marked in the Swagger file with a “lock” sign in the front. Their access_token needs

278 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

to be passed for authentification in the Authorization HTTP header.

For RainMaker API documentation, please refer to https://swaggerapis.rainmaker.espressif.
com.

When smartphones communicate with the RainMaker cloud, the underlying protocol is Hy-
perText Transfer Protocol Secure (HTTPS). HTTPS can authenticate the server to protect
the privacy and integrity of the exchange data. The HTTPS body received by the RainMaker
cloud is in JSON format.

10.4.2 Initiating Communication via Smartphone

Android and iOS provide good native support for HTTPS and JSON.

• The Android system uses JSONObject and JSONArray to assemble and parse JSON
objects and arrays, and HttpURLConnection to initiate HTTPS requests.

• The iOS system uses NSJSONSerialization to assemble and parse JSON data, and
URLSession to initiate HTTPS requests.

Of course, you can also use third-party HTTPS and JSON libraries.

10.4.3 Account Registration

First, we need to implement the registration of a new account, which will be used to bind the
device in subsequent steps and control it remotely. In this project, the account is registered
via email address.

Figure 10.18. SIGN UP interface

Chapter 10. Smartphone App Development 279

https://swaggerapis.rainmaker.espressif.com
https://swaggerapis.rainmaker.espressif.com

There is a toggle button in the registration interface to switch between “SIGN IN” and “SIGN
UP”. For the SIGN UP interface, there are three input fields: Email, Password, and Confirm
Password. The content of the Password and Confirm Password fields can be shown or hidden
by toggling their visibility, so that users can check whether they have entered the correct
password. The password should contain at least one uppercase letter and a number.

Before clicking “Register”, users must read and agree to the Privacy Policy and Terms of Use.
Then, it will navigate to a verification interface, and a digital code will be sent to the email
address. Users need to enter the correct digital code to complete the registration procedure.
The SIGN UP interface is shown in Figure 10.18.

Figure 10.19 demonstrates the API for account registraion. For detailed information, please
refer to https://swaggerapis.rainmaker.espressif.com/#/User/usercreation.

Figure 10.19. API for account registration

The account registration function is implemented as follows:

Create a new account. Below shows the account registration API, where user_name refers
to the email address used for registration, and password to the password.
1. POST /v1/user

2. Content-Type: application/json

3.

4. {

5. "user_name": "username@domain.com",

6. "password": "password"

7. }

To create a new account in Android, use:

1. @POST

2. Call<ResponseBody> createUser(@Url String url, @Body JsonObject body);

Source code

For the source code of creating a new account in Android, please refer to
book-esp32c3-iot-projects/phone app/app android/app/src/main/java/

com/espressif/cloudapi/ApiInterface.java.

To create a new account in iOS, use:

280 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://swaggerapis.rainmaker.espressif.com/#/User/usercreation
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java

1. func createNewUser(name: String, password: String) {

2. apiWorker.callAPI(endPoint: .createNewUser(url: self.url, name: name,

3. password: password), encoding: JSONEncoding.default) { data, error in

4. self.apiParser.parseResponse(data, withError: error) { umError in

5. self.presenter?.verifyUser(withName: name, andPassword:

6.

7. }

Source code

For the source code of creating a new account in iOS, please refer to book-esp32c3-
iot-projects/phone app/app ios/ESPRainMaker/ESPRainMaker/

UserManagement/Interactors/ESPCreateUserService.swift.

Verify the account after receiving the digital code. Below shows details of the API, where
user_name refers to the email address used for registration, and verification_code

to the digital code.
POST /v1/user

Content-Type: application/json

{

"user_name": "username@domain.com",

"verification_code": "verification_code"

}

To verify the account with digital code in Android, use:

1. @POST

2. Call<ResponseBody> confirmUser(@Url String url, @Body JsonObject body);

Source code

For the source code of verifying the account in Android, please refer to book-esp32c3-
iot-projects/phone app/app android/app/src/main/java/com/

espressif/cloudapi/ApiInterface.java.

To verify the account with digital code in iOS, use:
1. func confirmUser(name: String, verificationCode: String) {

2. apiWorker.callAPI(endPoint: .confirmUser(url: self.url, name: name,

3. verificationCode: verificationCode),

4. encoding: JSONEncoding.default) { data, error in

5. self.apiParser.parseResponse(data, withError: error) { umError in

6. self.presenter?.userVerified(withError: umError)

7. }

8. }

9. }

Chapter 10. Smartphone App Development 281

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPCreateUserService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPCreateUserService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPCreateUserService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java

Source code

For the source code of verifying the account in iOS, please refer to book-esp32c3-
iot-projects/phone app/app ios/ESPRainMaker/ESPRainMaker/

UserManagement/Interactors/ESPCreateUserService.swift.

10.4.4 Account Login

After account registration, we can call the account login API to get the token for authenti-
cation and the basic profile.

The smartphone app project in this chapter supports login via third-party accounts such as
GitHub, Apple, and Google. So long as users have accounts of these three platforms, they
can log in directly in the app without registration.

If users have already registered new accounts, they can also log in to the app by entering
their email address and password.

If users forget their password, they can click “Forgot password?” under the “Sign in” button
to reset password.

At the bottom of the SIGN IN interface are the project-related documentation, privacy agree-
ment, terms of use, and the app version. The SIGN IN interface is shown in Figure 10.20.

Figure 10.20. SIGN IN interface

282 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPCreateUserService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPCreateUserService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPCreateUserService.swift

The account login function is implemented as follows:

Request an access token. The API is shown in Figure 10.21 and details can be found at
https://swaggerapis.rainmaker.espressif.com/#/User/login.

Figure 10.21. API for account login

POST /v1/login

Content-Type: application/json

{

"user_name": "username@domain.com",

"password": "password"

}

The server responds to the request as follows:
{

"status": "success",

"description": "Login successful",

"idtoken": "idtoken",

"accesstoken": "accesstoken",

"refreshtoken": "refreshtoken"

}

Among these fields, status tells whether the request is successful; description provides
details of the request; accesstoken is the token to be added to the HTTP request header
by all APIs requiring user permissions, in the format of Authorization:$acces-
stoken; idtoken and refreshtoken are not used for now and thus not explained here.

To request access token in Android, use:

1. @POST

2. Call<ResponseBody> login(@Url String url, @Body JsonObject body);

Source code

For the source code of requesting access token in Android, please refer to book-
esp32c3-iot-projects/phone app/app android/app/src/main/java/

com/espressif/cloudapi/ApiInterface.java.

To request access token in iOS, use:

Chapter 10. Smartphone App Development 283

https://swaggerapis.rainmaker.espressif.com/#/User/login
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java

1. func loginUser(name: String, password: String) {

2. apiWorker.callAPI(endPoint: .loginUser(url: self.url,

3. name: name, password: password),

4. encoding: JSONEncoding.default) { data, error in|

5. self.apiParser.parseExtendSessionResponse(data,

6. error: error) { _, umError in

7. self.presenter?.loginCompleted(withError: umError)

8. }

9. }

10. }

Source code

For the source code of requesting access token in iOS, please refer to book-esp32c3-
iot-projects/phone app/app ios/ESPRainMaker/ESPRainMaker/

UserManagement/Interactors/ESPLoginService.swift.

Get user profile. The API is shown in Figure 10.22 and details can be found at https:
//swaggerapis.rainmaker.espressif.com/#/User/getUser.

Figure 10.22. API to get user profile

GET /v1/user

Authorization: $accesstoken

In response to the “get user profile” request, the server returns:
{

"user_id": "string",

"user_name": "string",

"super_admin": true,

"picture_url": "string",

"name": "string",

"mfa": true,

"phone_number": "<+Mobile Number with country code>"

}

Among these fields, user_id is the user’s unique identifier and will be used later in provi-
sioning; user_name refers to the account; super_admin is returned true only when the
user is a super admin; picture_url points to the user’s profile picture; phone_number
is the user’s mobile phone number; name and mfa are not used in this project and thus not
explained here.

To get user profile in Android, use:

1. @GET

2. Call<ResponseBody> fetchUserDetails(@Url String url);

284 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPLoginService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPLoginService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPLoginService.swift
https://swaggerapis.rainmaker.espressif.com/#/User/getUser
https://swaggerapis.rainmaker.espressif.com/#/User/getUser

Source code

For the source code of getting user profile in Android, please refer to book-esp32c3-
iot-projects/phone app/app android/app/src/main/java/com/

espressif/cloudapi/ApiInterface.java.

To get user profile in iOS, use:
1. func fetchUserDetails() {

2. sessionWorker.checkUserSession { accessToken, error in

3. if let token = accessToken, token.count > 0 {

4. self.apiWorker.callAPI(endPoint: .fetchUserDetails(url: self.url,

5. accessToken: token), encoding:

6. JSONEncoding.default) { data, error in

7. self.apiParser.parseUserDetailsResponse(data,

8. withError: error) { umError in

9. self.presenter?.userDetailsFetched(error: umError)

10. return

11. }

12. }

13. } else {

14. self.presenter?.userDetailsFetched(error: error)

15. }

16. }

17. }

Source code

For the source code of getting user profile in iOS, please refer to book-esp32c3-
iot-projects/phone app/app ios/ESPRainMaker/ESPRainMaker/

UserManagement/Interactors/ESPUserService.swift.

10.5 Development of Device Provisioning
As described in Section 10.4, we can get access token and user_id of the RainMaker
account through APIs for account login and getting user profile. The next step is to find
the device, connect it to the router, and activitate it on the cloud. The suitable provision-
ing library for the app is idf-provisioning, which is encapsulated based on ESP-IDF
provisioning.

For provisioning methods, please refer to https://bookc3.espressif.com/provisioning.

Figure 10.23 illustrates the data exchange between the smartphone and the device during
provisioning. This is also mentioned in Section 7.3.4 Bluetooth Provisioning.

Chapter 10. Smartphone App Development 285

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiInterface.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPUserService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPUserService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPUserService.swift
https://bookc3.espressif.com/provisioning

Figure 10.23. Data exchange between smartphone and device during provisioning

10.5.1 Scanning Devices

Navigate to the homepage of the app, click the button in the upper right corner, and the
camera will be called to scan QR Code on devices. This is the fastest way to discover a smart
device. Except for QR code scanning, users can also discover devices through BLE or SoftAP
provisioning. The device scanning interface is shown in Figure 10.24. (The actual interface
may be different from the screenshots in this book due to application upgrades.)

Figure 10.24. Device scanning interface

In the following sections, we will take Bluetooth provisioning as an example to introduce
the process of device provisoning.

286 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Scanning devices in Android

Users should upgrade their phones to Android 9.0 or higher and enable GPS to search for
Bluetooth LE signals. The code is as follows:

Source code

For the source code of scanning devices in Android, please refer to book-esp32c3-iot-
projects/phone app/app android/app/src/main/java/com/espressif/ui/

activites/BLEProvisionLanding.java.

1. private void startScan() {

2. //Code Omitted

3. if (ActivityCompat.checkSelfPermission(this,

4. Manifest.permission.ACCESS_ FINE_LOCATION) ==

5. PackageManager.PERMISSION_GRANTED) {

6. provisionManager.searchBleEspDevices(deviceNamePrefix, bleScanListener);

7. updateProgressAndScanBtn();

8. } else {

9. //Code Omitted

10. }

11.}

12.

13.private BleScanListener bleScanListener = new BleScanListener() {

14. @Override

15. public void scanStartFailed() {

16. Toast.makeText(BLEProvisionLanding.this,

17. "Please turn on Bluetooth to connect BLE device",

18. Toast.LENGTH_SHORT).show();

19. }

20.

21. @Override

22. public void onPeripheralFound(BluetoothDevice device,

23. ScanResult scanResult) {

24. //Code Omitted

25. }

26.

27. @Override

28. public void scanCompleted() {

29. //Code Omitted

30. }

31.

32. @Override

33. public void onFailure(Exception e) {

34. //Code Omitted

35. }

36.};

Chapter 10. Smartphone App Development 287

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/BLEProvisionLanding.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/BLEProvisionLanding.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/BLEProvisionLanding.java

Scanning devices in iOS

In the following code, prefix is used to filter devices by names. If a device has its unique
identifier, it can be used for filtering. iOS code has an additional parameter transport
with two possible values: ble and softap, which refers to the two provisioning methods.

Source code

For the source code of scanning devices in iOS, please refer to book-esp32c3-iot-
projects/phone app/app ios/ESPRainMaker/ESPRainMaker/Interface/

Provision/BLE/BLELandingViewController.swift.

1.ESPProvisionManager.shared.searchESPDevices(devicePrefix: "prefix",

2. transport: .ble, security:Configuration.shared.espProvSetting.securityMode)

3. { bleDevices, _ in

4. //Code Omitted

5.}

10.5.2 Connecting Devices

Connecting devices in Android

Source code

For the source code of connecting devices in Android, please refer to book-esp32c3-
iot-projects/phone app/app android/app/src/main/java/com/

espressif/ui/activites/BLEProvisionLanding.java.

1. override fun onCreate(savedInstanceState: Bundle?) {

2. super.onCreate(savedInstanceState)

3. //Code Omitted

4. EventBus.getDefault().register(this)

5. }

6.

7. @Override

8. protected void onDestroy() {

9. EventBus.getDefault().unregister(this);

10. super.onDestroy();

11. }

12.

13. @Subscribe(threadMode = ThreadMode.MAIN)

14. public void onEvent(DeviceConnectionEvent event) {

15. handler.removeCallbacks(disconnectDeviceTask);

16. switch (event.getEventType()) {

17. case ESPConstants.EVENT_DEVICE_CONNECTED:

18. //Code Omitted

19. break;

20.

21. case ESPConstants.EVENT_DEVICE_DISCONNECTED:

288 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/BLE/BLELandingViewController.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/BLE/BLELandingViewController.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/BLE/BLELandingViewController.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/BLEProvisionLanding.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/BLEProvisionLanding.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/BLEProvisionLanding.java

22. //Code Omitted

23. break;

24.

25. case ESPConstants.EVENT_DEVICE_CONNECTION_FAILED:

26. //Code Omitted

27. break;

28. }

29. }

In Android, EventBus is used to notify activities when Bluetooth LE connection status changes,
so it is necessary to register a callback function in activities. After the device has been dis-
covered, we should first create a device instance as shown in the code above, and then call
the connection API as follows, so that the smartphone app can initiate a connection request
to the device.
1. public void deviceClick(int deviceClickedPosition) {

2. stopScan();

3. isConnecting = true;

4. isDeviceConnected = false;

5. btnScan.setVisibility(View.GONE);

6. rvBleDevices.setVisibility(View.GONE);

7. progressBar.setVisibility(View.VISIBLE);

8. this.position = deviceClickedPosition;

9. BleDevice bleDevice = deviceList.get(deviceClickedPosition);

10. String uuid = bluetoothDevices.get(bleDevice.getBluetoothDevice());

11.

12. if (ActivityCompat.checkSelfPermission(BLEProvisionLanding.this,

13. Manifest. permission.ACCESS_FINE_LOCATION) ==

14. PackageManager.PERMISSION_GRANTED) {

15. boolean isSec1 = true;

16. if (AppConstants.SECURITY_0.equalsIgnoreCase(BuildConfig.SECURITY)) {

17. isSec1 = false;

18. }

19. if (isSec1) {

20. provisionManager.createESPDevice(ESPConstants.TransportType.

21. TRANSPORT_BLE, ESPConstants.SecurityType.SECURITY_1);

22. } else {

23. provisionManager.createESPDevice(ESPConstants.TransportType.

24. TRANSPORT_BLE, ESPConstants.SecurityType.SECURITY_0);

25. }provisionManager.getEspDevice().connectBLEDevice(bleDevice.

26. getBluetoothDevice(), uuid);

27. handler.postDelayed(disconnectDeviceTask, DEVICE_CONNECT_TIMEOUT);

28. } else {

29. Log.e(TAG, "Not able to connect device as Location permission is

30. not granted.");

31. }

32. }

Chapter 10. Smartphone App Development 289

Source code

For the source code of initiating a connection by the smartphone app, please refer to
book-esp32c3-iot-projects/phone app/app android/app/src/main/java/

com/espressif/ui/activites/BLEProvisionLanding.java.

Connecting devices in iOS

The iOS app provides a proxy for the connection callback function, so we can directly call
the instance connection interface returned by device scanning and pass the status proxy as
a parameter to bleConnectionStatusHandler. The code is as follows:

Source code

The pods folder stores imported third-party libraries. Files in this folder will only be gen-
erated once the project is compiled and installed locally. For the source code of connecting
devices in iOS, please refer to book-esp32c3-iot-projects/phone
app/pods/espprovision/ESPDevice.swift.

1. open func connect(delegate: ESPDeviceConnectionDelegate? = nil,

2. completionHandler: @escaping (ESPSessionStatus) -> Void) {

3. ESPLog.log("Connecting ESPDevice...")

4. self.delegate = delegate

5. switch transport {

6. case .ble:

7. ESPLog.log("Start connecting ble device.")

8. bleConnectionStatusHandler = completionHandler

9. if espBleTransport == nil {

10. espBleTransport = ESPBleTransport(scanTimeout: 0,

11. deviceNamePrefix: "")

12. }

13. espBleTransport.connect(peripheral: peripheral,

14. withOptions:

15. nil,

16. delegate: self)

17. case .softap:

18. ESPLog.log("Start connecting SoftAp device.")

19. if espSoftApTransport == nil {

20. espSoftApTransport = ESPSoftAPTransport(baseUrl:

21. ESPUtility.baseUrl)

22. }

23. self.connectToSoftApUsingCredentials(ssid: name,

24. completionHandler: completionHandler)

25. }

26. }

290 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/BLEProvisionLanding.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/BLEProvisionLanding.java

10.5.3 Generating Secret Keys

Secret keys are used for authentication when users bind devices, and can be randomly gen-
erated by the smartphone app. To generate a secret key in Android, add:

1. final String secretKey = UUID.randomUUID().toString();

To generate a secret key in iOS, add:

1. let secretKey = UUID().uuidString

10.5.4 Getting Node ID

Each device has its unique identifier, namely the node ID. After the device is provisioned, it
can be bound to the cloud server via its node ID by calling a binding request. The purpose
of binding is to ensure subsequent remote control.

Getting Node ID in Android

Source code

For the source code of getting node ID in Android, please refer to book-esp32c3-iot-
projects/phone app/app android/app/src/main/java/com/espressif/ui/

activites/ProvisionActivity.java.

To create the request for node ID, use:
1. EspRmakerUserMapping.CmdSetUserMapping deviceSecretRequest =

2. EspRmakerUser Mapping.CmdSetUserMapping.newBuilder()

3. .setUserID(ApiManager.userId)

4. .setSecretKey(secretKey)

5. .build();

6. EspRmakerUserMapping.RMakerConfigMsgType msgType =EspRmakerUserMapping.

7. RMakerConfigMsgType.TypeCmdSetUserMapping;

8. EspRmakerUserMapping.RMakerConfigPayload payload = EspRmakerUserMapping.

9. RMakerConfigPayload.newBuilder()

10. .setMsg(msgType)

11. .setCmdSetUserMapping(deviceSecretRequest)

12. .build();

To initiate the request, use:
1. private void associateDevice() {

2. provisionManager.getEspDevice().sendDataToCustomEndPoint(AppConstants.

3. HANDLER_RM_USER_MAPPING, payload.toByteArray(), new ResponseListener() {

4. @Override

5. public void onSuccess(byte[] returnData) {

6. processDetails(returnData, secretKey);

7. }

8. @Override

9. public void onFailure(Exception e) {

Chapter 10. Smartphone App Development 291

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/ProvisionActivity.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/ProvisionActivity.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/ProvisionActivity.java

10. //Code Omitted

11. }

12. });

13. }

To parse the device’s response, use:
1. private void processDetails(byte[] responseData, String secretKey) {

2.

3. try {

4. EspRmakerUserMapping.RMakerConfigPayload payload = EspRmakerUserMapping.

5. RMakerConfigPayload.parseFrom(responseData);

6. EspRmakerUserMapping.RespSetUserMapping response = payload.

7. getRespSetUserMapping();

8.

9. if (response.getStatus() == EspRmakerUserMapping.RMakerConfigStatus.

10. Success) {

11. //Node ID received. Ready for device provisioning.

12. receivedNodeId = response.getNodeId();

13. }

14. } catch (InvalidProtocolBufferException e) {

15. //Code Omitted

16. }

17.}

Getting Node ID in iOS

Source code

For the source code of getting node ID in iOS, please refer to book-esp32c3-iot-
projects/phone app/app ios/ESPRainMaker/ESPRainMaker/AWSCognito/

DeviceAssociation.swift.

1. private func createAssociationConfigRequest() throws -> Data? {

2. var configRequest = Rainmaker_CmdSetUserMapping()

3. configRequest.secretKey = secretKey

4. configRequest.userID = User.shared.userInfo.userID

5. var payload = Rainmaker_RMakerConfigPayload()

6. payload.msg = Rainmaker_RMakerConfigMsgType.typeCmdSetUserMapping

7. payload.cmdSetUserMapping = configRequest

8. return try payload.serializedData()

9. }

To initiate the request, use:
1. func associateDeviceWithUser() {

2. do {

3. let payloadData = try createAssociationConfigRequest()

4. if let data = payloadData {

5. device.sendData(path: Constants.associationPath, data: data)

6. { response, error in

292 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/DeviceAssociation.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/DeviceAssociation.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/DeviceAssociation.swift

7. guard error == nil, response ! = nil else {

8. self.delegate?.deviceAssociationFinishedWith(success:

9. false, nodeID: nil,

10. error: AssociationError.runtimeError

11. (error!.localizedDescription))

12. return

13. }

14. self.processResponse(responseData: response!)

15. }

16. } else {

17. delegate?.deviceAssociationFinishedWith(success: false, nodeID:

18. nil, error: AssociationError.runtimeError

19. ("Unable to fetch request payload."))

20. }

21. } catch {

22. delegate?.deviceAssociationFinishedWith(success: false, nodeID: nil,

23. error: AssociationError.runtimeError

24. ("Unable to fetch request payload."))

25. }

26. }

To parse the device’s response, use:
1. func processResponse(responseData: Data) {

2. do {

3. let response = try Rainmaker_RMakerConfigPayload(serializedData:

4. response Data)

5. if response.respSetUserMapping.status == .success {

6. //Node ID received. Ready for device provisioning.

7. delegate?.deviceAssociationFinishedWith(success: true, nodeID:

8. response. respSetUserMapping.nodeID, error: nil)

9. } else {

10. delegate?.deviceAssociationFinishedWith(success: false, nodeID:

11. nil, error: AssociationError.runtimeError

12. ("User node mapping failed."))

13. }

14. } catch {

15. delegate?.deviceAssociationFinishedWith(success: false, nodeID: nil,

16. error: AssociationError.runtimeError

17. (error.localizedDescription))

18. }

19. }

10.5.5 Provisioning Devices

Once the smartphone app establishes a connection with the device, we can implement pro-
tocols through Bluetooth communication, provision the device, and activate the device on
the cloud. The entire provisioning process consists of five steps as listed in Figure 10.25.

Chapter 10. Smartphone App Development 293

Figure 10.25. Device provisioning interface

Provisioning devices in Android

Source code

For the source code of provisioning in Android, please refer to book-esp32c3-iot-
projects/phone app/app android/app/src/main/java/com/espressif/

ui/activites/ProvisionActivity.java.

1. private void provision() {

2.

3. provisionManager.getEspDevice().provision(ssidValue, passphraseValue,

4. new ProvisionListener() {

5. @Override

6. public void createSessionFailed(Exception e) {}

7. @Override

8. public void wifiConfigSent() {}

9. @Override

10. public void wifiConfigFailed(Exception e) {}

11. @Override

12. public void wifiConfigApplied() {}

294 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/ProvisionActivity.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/ProvisionActivity.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/ProvisionActivity.java

13. @Override

14. public void wifiConfigApplyFailed(Exception e) {}

15. @Override

16. public void provisioningFailedFromDevice(final ESPConstants.

17. Provision FailureReason failureReason) {}

18. @Override

19. public void deviceProvisioningSuccess() {

20. // Provisioning succeeded.

21. }

22. @Override

23. public void onProvisioningFailed(Exception e) {}

24. });

25. }

Provisioning devices in iOS

Source code

For the source code of provisioning in iOS, please refer to book-esp32c3-iot-
projects/phone app/app ios/ESPRainMaker/ESPRainMaker/Interface/

Provision/SuccessViewController.swift.

1. espDevice.provision(ssid: ssid, passPhrase: passphrase) { status in

2. switch status {

3. case .success:

4. //Provisioning succeeded.

5. case let .failure(error):

6. switch error {

7. case .configurationError:

8. case .sessionError:

9. case .wifiStatusDisconnected:

10. default:

11. }

12. case .configApplied:

13. }

14. }

Once the device is provisioned, we are ready to develop the device control function of the
smartphone app.

10.6 Development of Device Control
In Section 10.5, we have learned how to provision and activate devices. In this section, we
will set about to bind the device to the cloud account and manage to control it.

Chapter 10. Smartphone App Development 295

https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/SuccessViewController.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/SuccessViewController.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/SuccessViewController.swift

10.6.1 Binding Devices to Cloud Accounts

API for binding devices to accounts is shown in Figure 10.26 and can be found at https://
swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/addRemoveUser-
NodeMapping.

Figure 10.26. API for binding devices

To bind the device to the account, use the secret key generated in Section 10.5.3, the device
ID (node_id) and the operation identifier.
PUT /v1/user/nodes/mapping

Content-Type: application/json

Authorization: $accesstoken

{

"node_id": "$node_id",

"secret_key": "$secretKey",

"operation": "add"

}

Binding devices in Android

Source code

For the source code of binding devices in Android, please refer to book-esp32c3-iot-
projects/phone app/app android/app/src/main/java/com/espressif/

cloudapi/ApiManager.java.

1. public void addNode(final String nodeId,

2. String secretKey,

3. final ApiResponseListener listener) {

4. DeviceOperationRequest req = new DeviceOperationRequest();

5. req.setNodeId(nodeId);

6. req.setSecretKey(secretKey);

7. req.setOperation(AppConstants.KEY_OPERATION_ADD);

8.

9. apiInterface.addNode(AppConstants.URL_USER_NODE_MAPPING, accessToken,

10. req). enqueue(new Callback<ResponseBody>() {

11.

12. @Override

13. public void onResponse(Call<ResponseBody> call,

14. Response<ResponseBody> response) {

15. //Code Omitted

16. }

296 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/addRemoveUserNodeMapping
https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/addRemoveUserNodeMapping
https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/addRemoveUserNodeMapping
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java

17. @Override

18. public void onFailure(Call<ResponseBody> call, Throwable t) {

19. }

20. });

21. }

Binding devices in iOS

Source code

For the source code of binding devices in iOS, please refer to book-esp32c3-iot-
projects/phone app/app ios/ESPRainMaker/ESPRainMaker/Interface/

Provision/SuccessViewController.swift.

1. @objc func sendRequestToAddDevice() {

2. let parameters = ["user_id": User.shared.userInfo.userID,

3. "node_id":

4. User. shared.currentAssociationInfo!.nodeID,

5. "secret_key":User.shared.currentAssociationInfo!.uuid,

6. "operation": "add"]

7. NetworkManager.shared.addDeviceToUser(parameter: parameters as!

8. [String: String]) { requestID, error in

9. if error ! = nil, self.count > 0 {

10. self.count = self.count - 1

11. DispatchQueue.main.asyncAfter(deadline: .now()) {

12. self.perform(#selector(self.sendRequestToAddDevice),

13. with:nil,

14. afterDelay: 5.0)

15. }

16. } else {

17. if let requestid = requestID {

18. self.step3Indicator.stopAnimating()

19. self.step3Image.image = UIImage(named: "checkbox_checked")

20. self.step3Image.isHidden = false

21. self.step4ConfirmNodeAssociation(requestID: requestid)

22. } else {

23. self.step3FailedWithMessage(message: error?.description ??

24. "Unrecognized error. Please check your internet.")

25. }

26. }

27. }

28. }

Once the device is bound to the account, users can initiate the request for remote commu-
nication.

Chapter 10. Smartphone App Development 297

https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/SuccessViewController.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/SuccessViewController.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Interface/Provision/SuccessViewController.swift

10.6.2 Getting a List of Devices

When users get all the devices bound to the account, the smartphone app would show them
in a list. At the top of the interface, there are several toggles for device groups. By default,
all the devices will appear in the “All Devices” group. If users want to assign the devices to
different groups, they may click the “ ” icon on the right and will then see the options to
manage and create groups.

Figure 10.27. Interface showing the list of all bound devices

Devices grayed out indicate powered down and offline, while devices highlighted indicate
available online. The device card includes device type icon, device name, offline time, and
a toggle switch. Figure 10.27 shows an example list of all devices bound to the account.

The API to get all the bound devices is shown in Figure 10.28 and can be found at https://
swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/getUserNode-
MappingRequestStatus.

Figure 10.28. API to get bound devices

298 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/getUserNodeMappingRequestStatus
https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/getUserNodeMappingRequestStatus
https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/getUserNodeMappingRequestStatus

GET /v1/user/nodes?node_details=true

Authorization: $accesstoken

In response to the request, the server returns:
{

"nodes": "[nodeid1, ...]",

"node_details": [

{

"id": "nodeid1",

"role": "primary",

"status": {

"connectivity": {

"connected": true,

"timestamp": 1584698464101

}

},

"config": {

"node_id": "nodeid1",

"config_version": "config_version",

"devices": [

{}

],

"info": {

"fw_version": "fw_version",

"name": "node_name",

"type": "node_type"

}

},

"params": {

"Light": {

"brightness": 0,

"output": true

},

"Switch": {

"output": true

}

}

}

],

"next_id": "nodeid1",

"total": 5

}

Among these returned fields, nodes is an array of all the devices’ ID; node_details is the
detailed information of the devices, which includes id (unique identifier), role, status
(connection status), config (configuration), params (device properties), etc.; total is
the number of devices and is returned when device information spread across pages.

Chapter 10. Smartphone App Development 299

Getting device information in Android

Source code

For the source code of getting device information in Android, please refer to book-
esp32c3-iot-projects/phone app/app android/app/src/main/java/com/

espressif/cloudapi/ApiManager.java.

1. private void getNodesFromCloud(final String startId,

2. final ApiResponseListener listener) {

3.

4. Log.d(TAG, "Get Nodes from cloud with start id : " + startId);

5. apiInterface.getNodes(AppConstants.URL_USER_NODES_DETAILS,

6. accessToken,

7. startId).enqueue(new Callback<ResponseBody>() {

8. @Override

9. public void onResponse(Call<ResponseBody> call,

10. Response<ResponseBody> response) {

11. //Code Omitted

12. }

13. @Override

14. public void onFailure(Call<ResponseBody> call, Throwable t) {

15. t.printStackTrace();

16. listener.onNetworkFailure(new Exception(t));

17. }

18. });

19. }

Getting device information in iOS

Source code

For the source code of getting device information in iOS, please refer to book-esp32c3-
iot-projects/phone app/app ios/ESPRainMaker/ESPRainMaker/

AWSCognito/ESPAPIManager.swift.

1. func getNodes(partialList: [Node]? = nil, nextNodeID: String? = nil,

2. completionHandler: @escaping ([Node]?, ESPNetworkError?) -> Void) {

3. let sessionWorker = ESPExtendUserSessionWorker()

4. sessionWorker.checkUserSession() { accessToken, error in

5. if let token = accessToken {

6. let headers: HTTPHeaders = ["Content-Type": "application/json",

7. "Authorization": token]

8. var url=Constants.getNodes + "?node_details=true&num_records=10"

9. if nextNodeID ! = nil {

10. url += "&start_id=" + nextNodeID!

11. }

12. self.session.request(url, method: .get,

13. parameters: nil,

300 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift

14. encoding: JSONEncoding.default,

15. headers: headers).responseJSON { response in

16. //Code Omitted

17. }

18. } else {

19. if self.validatedRefreshToken(error: error) {

20. completionHandler(nil, .emptyToken)

21. }

22. }

23. }

24. }

10.6.3 Getting Device Status

By clicking on a specific device in the device list, users can navigate to its control interface,
which displays different information according to device types.

Figure 10.29. Bulb control interface

This section takes the control interface of light bulbs as an example, which contains the
bulb’s name, power on/off status, brightness, hue, and saturation. This information was ob-
tained eariler when getting the list of bound devices in Section 10.6.2. The control interface
for light bulbs is shown in Figure 10.29.

Chapter 10. Smartphone App Development 301

Given that one device might be controlled by different users, we should keep the device
information in the smartphone app up to date by regularly refreshing and getting device
status.

The API to get the status of a device is shown in Figure 10.30 and can be found at https://
swaggerapis.rainmaker.espressif.com/#/Node%20Parameter%20Operations/getnodestate.

Figure 10.30. API to get device status

GET /v1/user/nodes/params?node_id=string

Authorization: $accesstoken

In response to the “get status” request, the server returns:
{

"Light": {

"brightness": 0,

"output": true

},

"Switch": {

"output": true

}

}

Among the returned fields, Light represents the brightness of the device, and bright-

ness is the specific value; Switch represents the on/off status of the device.

Getting the device’s status in Android

Source code

For the source code of getting device status in Android, please refer to book-esp32c3-
iot-projects/phone app/app android/app/src/main/java/com/

espressif/cloudapi/ApiManager.java.

1. public void getParamsValues(final String nodeId, final ApiResponseListener

2. listener) {

3. apiInterface.getParamValue(AppConstants.URL_USER_NODES_PARAMS,

4. accessToken, nodeId).enqueue(new Callback<ResponseBody>() {

5. @Override

6. public void onResponse(Call<ResponseBody> call,

7. Response<ResponseBody> response) {

8. //Code Omitted

9. }

10. @Override

11. public void onFailure(Call<ResponseBody> call, Throwable t) {

12. t.printStackTrace();

302 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://swaggerapis.rainmaker.espressif.com/#/Node%20Parameter%20Operations/getnodestate
https://swaggerapis.rainmaker.espressif.com/#/Node%20Parameter%20Operations/getnodestate
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java

13. listener.onNetworkFailure(new Exception(t));

14. }

15. });

16. }

Getting the device’s status in iOS

Source code

For the source code of getting device status in iOS, please refer to book-esp32c3-iot-
projects/phone app/app ios/ESPRainMaker/ESPRainMaker/AWSCognito/

ESPAPIManager.swift.

1. func getDeviceParams(device: Device, completionHandler:

2. @escaping (ESPNetworkError?) -> Void) {

3.

4. ESPExtendUserSessionWorker().checkUserSession(){accessToken, error in

5. if let token = accessToken {

6. let headers: HTTPHeaders = ["Content-Type": "application/json",

7. "Authorization": token]

8. let url = Constants.setParam + "?node_id=" +

9. (device.node?.node_id ?? "")

10. self.session.request(url, method: .get, parameters: nil,

11. encoding: JSONEncoding.default, headers:

12. headers).responseJSON { response in

13. //Code Omitted

14. }

15. } else {

16. if self.validatedRefreshToken(error: error) {

17. completionHandler(.emptyToken)

18. }

19. }

20. }

21. }

10.6.4 Changing Device Status

The app allows users to change device name, power on/off status, brightness, hue, and
saturation. This section will explain how to implement this function with the example of
changing brightness and on/off status.

The API to change the status of a device is shown in Figure 10.31 and can be found at
https://swaggerapis.rainmaker.espressif.com/#/Node%20Parameter%20Operations/
updatenodestate.

Chapter 10. Smartphone App Development 303

https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift
https://swaggerapis.rainmaker.espressif.com/#/Node%20Parameter%20Operations/updatenodestate
https://swaggerapis.rainmaker.espressif.com/#/Node%20Parameter%20Operations/updatenodestate

Figure 10.31. API to change device status

1. PUT /v1/user/nodes/params

2. Authorization: $accesstoken

3.

4. [

5. {

6. "node_id": "string",

7. "payload": {

8. "Light": {

9. "brightness": 100,

10. "output": true

11. },

12. "Switch": {

13. "output": true

14. }

15. }

16. }

17.]

Among the returned fields, node_id represents the device’s unique identifier; Light repre-
sents the brightness of the device, and brightness is the specific value; Switch indicates
the on/off status of the device.

Changing device status in Android

Source code

For the source code of changing device status in Android, please refer to book-esp32c3-
iot-projects/phone app/app android/app/src/main/java/com/

espressif/cloudapi/ApiManager.java.

1. public void updateParamValue(final String nodeId,

2. JsonObject body,

3. final ApiResponseListener listener) {

4.

5. apiInterface.updateParamValue(AppConstants.URL_USER_NODES_PARAMS,

6. accessToken,

7. nodeId,

8. body).enqueue(new Callback<ResponseBody>(){

9. @Override

10. public void onResponse(Call<ResponseBody> call,

11. Response<ResponseBody> response) {

12. //Code Omitted

13. }

304 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java

14.

15. @Override

16. public void onFailure(Call<ResponseBody> call, Throwable t) {

17. t.printStackTrace();

18. listener.onNetworkFailure(new Exception(t));

19. }

20. });

21. }

Changing device status in iOS

Source code

For the source code of changing device status in iOS, please refer to book-esp32c3-
iot-projects/phone app/app ios/ESPRainMaker/ESPRainMaker/

AWSCognito/ESPAPIManager.swift.

1. func setDeviceParam(nodeID: String?, parameter: [String: Any],

2. completionHandler: ((ESPCloudResponseStatus) ->

3. Void)? = nil) {

4. NotificationCenter.default.post(Notification(name: Notification.Name

5. (Constants.paramUpdateNotification)))

6. if let nodeid = nodeID {

7. ESPExtendUserSessionWorker().checkUserSession(){accessToken, error in

8. if let token = accessToken {

9. let url = Constants.setParam + "?nodeid=" + nodeid

10. let headers: HTTPHeaders = ["Content-Type":

11. "application/json",

12. "Authorization": token]

13. self.session.request(url, method: .put,

14. parameters:

15. parameter,

16. encoding: ESPCustomJsonEncoder.default,

17. headers: headers).responseJSON {response in

18. //Code Omitted

19. }

20. } else {

21. let _ = self.validatedRefreshToken(error: error)

22. }

23. }

24. }

25. }

The code above allows users to change the status of a specific device. So far, we have
implemented the functions of account registration, account login, device scanning, device
connection, device provisioning, device binding, and remote control on RainMaker.

Chapter 10. Smartphone App Development 305

https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/AWSCognito/ESPAPIManager.swift

10.7 Development of Scheduling and User Centre
After implementing the core functional modules, it is also necessary to develop a scheduling
module and a user centre module according to the functional requirements. Usually, these
two modules are essential for a complete smartphone app. This section will describe the
development of these two modules.

10.7.1 Implementing Scheduling Function

The scheduling interface is mainly used to show, create, and edit schedule events. The list
page displays information such as name, time, date, and the recurring pattern of scheduled
events. Each event has a toggle switch. The scheduling interface is shown in Figure 10.32.

Figure 10.32. Scheduling interface

Data related to scheduling are stored in the local database of the smartphone app, and are
added, deleted, modified, and queried there. See below for the code.

Implementing scheduling in Android

Source code

For the source code of implementing scheduling in Android, please refer to book-
esp32c3-iot-projects/phone app/app android/app/src/main/java/com/

espressif/ui/activites/AddScheduleActivity.java.

306 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/AddScheduleActivity.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/AddScheduleActivity.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/ui/activities/AddScheduleActivity.java

The code to save schedule data is as follows, where KEY_OPERATION decribes the
schedule event, KEY_ID is the unique identifier, KEY_NAME refers to the schedule’s name,
KEY_DAYS to the scheduled date, KEY_MINUTES to the scheduled time, and KEY_TRIG

GERS to the recurring pattern (Monday to Friday).
1. private void saveSchedule() {

2. JsonObject scheduleJson = new JsonObject();

3. scheduleJson.addProperty(AppConstants.KEY_OPERATION, "");

4.

5. //Schedule JSON

6. scheduleJson.addProperty(AppConstants.KEY_ID, "");

7. scheduleJson.addProperty(AppConstants.KEY_NAME, "");

8.

9. JsonObject jsonTrigger = new JsonObject();

10. jsonTrigger.addProperty(AppConstants.KEY_DAYS, "");

11. jsonTrigger.addProperty(AppConstants.KEY_MINUTES, "");

12.

13. JsonArray triggerArr = new JsonArray();

14. triggerArr.add(jsonTrigger);

15. scheduleJson.add(AppConstants.KEY_TRIGGERS, triggerArr);

16.

17. prepareJson();

18. //Code Omitted

19. }

The code to update the schedule is as follows:
1. @SuppressLint("CheckResult")

2. Public void updateSchedules(final HashMap<String, JsonObject> map,

3. final ApiResponseListener listener) {

4. //Code Omitted

5. }

Source code

For the source code of updating schedules in Android, please refer to book-esp32c3-
iot-projects/phone app/app android/app/src/main/java/com/

espressif/cloudapi/ApiManager.java.

Implementing scheduling in iOS

Source code

For the source code of implementing scheduling in iOS, please refer to book-esp32c3-
iot-projects/phone app/app ios/ESPRainMaker/ESPRainMaker/Storage/

ESPLocalStorageSchedules.swift.

The code to save schedule data is as follows, where KEY_OPERATION decribes the schedule

Chapter 10. Smartphone App Development 307

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Storage/ESPLocalStorageSchedules.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Storage/ESPLocalStorageSchedules.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/Storage/ESPLocalStorageSchedules.swift

event, KEY_ID is the unique identifier, KEY_NAME refers to the schedule’s name, KEY_DAYS
to the scheduled date, KEY_MINUTES to the scheduled time, and KEY_TRIGGERS to the
recurring pattern (Monday to Friday).
1. func saveSchedules(schedules: [String: ESPSchedule]) {

2. do {

3. let encoded = try JSONEncoder().encode(schedules)

4. saveDataInUserDefault(data: encoded,

5. key: ESPLocalStorageKeys.scheduleDetails)

6. } catch {

7. print(error)

8. }

9. }

The code to update the schedule is as follows:
1. func fetchSchedules() -> [String: ESPSchedule] {

2. var scheduleList: [String: ESPSchedule] = [:]

3. do {

4. if let scheduleData = getDataFromSharedUserDefault(key:

5. ESPLocalStorageKeys.scheduleDetails) {

6. scheduleList = try JSONDecoder().decode([String:

7. ESPSchedule].self, from: scheduleData)

8. }

9. return scheduleList

10. } catch {

11. print(error)

12. return scheduleList

13. }

14. }

10.7.2 Implementing User Centre

The user centre module mainly includes functions like user profile, notification, change
password, privacy policy, terms of use, documentation, voice services, and logout. The user
centre interface is shown in Figure 10.33.

Among these functions, change password and logout need to be implemented by calling
cloud APIs. In this section, we will take change password as an example of implementing
user centre functions. The interface for changing password is shown in Figure 10.34.
1. PUT /v1/password

2. Authorization: $accesstoken

3. {

4. "password": "password",

5. "newpassword": "newpassowrd"

6. }

In the code above, password refers to the old password, which aids the cloud in chang-

308 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 10.33. User centre interface

Figure 10.34. API for changing password

ing password; newpassword refers to the new password. Once the password has been
changed, the new password should come into use, and the old one becomes invalid.

In response to the request, the server returns:
1. {

2. "status": "success",

3. "description": "Success description"

4. }

Among the returned fields, status indicates the status of changing password; descrip
tion indicates the description of the change request.

Changing password in Android

Source code

For the source code of changing password in Android, please refer to book-esp32c3-
iot-projects/phone app/app android/app/src/main/java/com/

espressif/cloudapi/ApiManager.java.

Chapter 10. Smartphone App Development 309

https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java
https://github.com/espressif/book-esp32c3-iot-projects/blob/main/phone_app/app_android/app/src/main/java/com/espressif/cloudapi/ApiManager.java

1. Public void changePassword(String oldPassword, String newPassword,

2. final ApiResponseListener listener) {

3.

4. JsonObject body = new JsonObject();

5. body.addProperty(AppConstants.KEY_PASSWORD, oldPassword);

6. body.addProperty(AppConstants.KEY_NEW_PASSWORD, newPassword);

7.

8. apiInterface.changePassword(AppConstants.URL_CHANGE_PASSWORD,

9. accessToken,

10. body).enqueue(new Callback<ResponseBody>() {

11.

12. @Override

13. public void onResponse(Call<ResponseBody> call,

14. Response<ResponseBody> response) {

15. //Code Omitted

16. }

17.

18. @Override

19. public void onFailure(Call<ResponseBody> call, Throwable t) {

20. t.printStackTrace();

21. listener.onNetworkFailure(new RuntimeException("Failed to

22. change password"));

23. }

24. });

25. }

Changing password in iOS

Source code

For the source code of changing password in iOS, please refer to book-esp32c3-iot-
projects/phone app/app ios/ESPRainMaker/ESPRainMaker/

UserManagement/Interactors/ESPChangePasswordService.swift.

1. func changePassword(oldPassword: String, newPassword: String) {

2. sessionWorker.checkUserSession() { accessToken, sessionError in

3. if let token = accessToken {

4. self.apiWorker.callAPI(endPoint: .changePassword(url: self.url,

5. old: oldPassword, new: newPassword,

6. accessToken: token), encoding:

7. JSONEncoding. default) { data, error in

8. self.apiParser.parseResponse(data, withError:

9. error) { umError in

10. self.presenter?.passwordChanged(withError: umError)

11. }

12. }

13. } else {

310 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPChangePasswordService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPChangePasswordService.swift
https://github.com/espressif/book-esp32c3-iot-projects/blob/cf25c67fbcedc44394fd7f90637b745d659f80ff/phone_app/app_ios/ESPRainMaker/ESPRainMaker/UserManagement/Interactors/ESPChangePasswordService.swift

14. if !self.apiParser.isRefreshTokenValid(serverError:sessionError) {

15. if let error = sessionError {

16. self.noRefreshSignOutUser(error: error)

17. }

18. } else {

19. self.presenter?.passwordChanged(withError: sessionError)

20. }

21. }

22. }

23. }

10.7.3 More Cloud APIs

In addition to the APIs detailed in the previous sections, RainMaker also provides some other
APIs. Let’s have a quick look at them.

Sharing devices with other users

The API to share devices with other users is shown in Figure 10.35 and can be found at
https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/addUser
NodeSharingRequests.

Figure 10.35. API for sharing devices with other users

Gettting the online/offline status of the device

The API to get the online/offline status of the device is shown in Figure 10.36 and can be
found at https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/
getNodeStatus.

Figure 10.36. API for getting online/offline status of the device

Creating device groups

The API to create device groups is shown in Figure 10.37 and can be found at https://
swaggerapis.rainmaker.espressif.com/#/Device%20grouping/usercreatedevicegroup.

Figure 10.37. API for creating device groups

Chapter 10. Smartphone App Development 311

https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/addUserNodeSharingRequests
https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/addUserNodeSharingRequests
https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/getNodeStatus
https://swaggerapis.rainmaker.espressif.com/#/User%20Node%20Association/getNodeStatus
https://swaggerapis.rainmaker.espressif.com/#/Device%20grouping/usercreatedevicegroup
https://swaggerapis.rainmaker.espressif.com/#/Device%20grouping/usercreatedevicegroup

Adding device to a group

The API to add a device to a group is shown in Figure 10.38 and can be found at https:
//swaggerapis.rainmaker.espressif.com/#/Device%20grouping/userupdatedevicegroup.

Figure 10.38. API for adding device to a group

Deleting device groups

The API to delete device groups is shown in Figure 10.39 and can be found at https://
swaggerapis.rainmaker.espressif.com/#/Device%20grouping/userdeletedevicegroup.

Figure 10.39. API for deleting device groups

Of course, RainMaker can do much more than what we have introduced. If interested, you
may check the API documentation to discover more fun features!

10.8 Summary
This chapter has mainly presented how to develop a smartphone app. At the beginning, we
introduced the development technologies for smartphone apps and the procedure to create
a new smartphone app project, so as to give you a general picture of the entire development
process. Then, we analysed the functional requirements for each module, namely user
management, device provisioning, device control, and scheduling and user centre. At last,
we detailed the development process of a smartphone app with source code, and showed
how to implement device provisioning and control in the smartphone app.

312 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://swaggerapis.rainmaker.espressif.com/#/Device%20grouping/userupdatedevicegroup
https://swaggerapis.rainmaker.espressif.com/#/Device%20grouping/userupdatedevicegroup
https://swaggerapis.rainmaker.espressif.com/#/Device%20grouping/userdeletedevicegroup
https://swaggerapis.rainmaker.espressif.com/#/Device%20grouping/userdeletedevicegroup

Chapter
11

Firmware Upgrade and
Version Management

The firmware update of IoT devices is often implemented through OTA (Over-the-Air). OTA
provides a secure and dependable means to remediate firmware vulnerabilities, introduce
novel functions, and optimize product performance, thereby enhancing the experience of
end users. At present, OTA has become a standard function in the mass production of
products.

Marking firmware with different versions based on their respective functionalities is a re-
liable and effective means of firmware management. Standardized methods of version
marking can facilitate version management, aid in troubleshooting, and enable efficient
post-upgrade tracking, ultimately leading to more effective firmware updates via OTA.

ESP-IDF provides an example of OTA and various firmware version management methods.
This chapter will cover these topics and demonstrate how to achieve remote OTA for an
intelligent lamp using ESP RainMaker.

11.1 Firmware Upgrade
The OTA mechanism allows the device to receive new firmware during normal operation,
and write the new firmware to the currently inactive application partition. After verifying
the validity of the firmware, the device switches to run on the new firmware. The basic steps
of OTA are shown in Figure 11.1.

Figure 11.1. Basic steps of OTA

From Figure 11.1, the basic steps of OTA are as follows:

(1) The cloud server pushes OTA information to the device.

(2) The device verifies the identity of the cloud server and downloads the firmware from
the trusted cloud server.

313

(3) The device decides whether to perform OTA according to the version information in
the firmware. If it decides to perform OTA, the firmware is then requested and written
to the flash. After the verification is successfully completed, the system switches to run
on the new firmware.

According to the basic steps listed above, to put it simply, the OTA process is the process of
firmware acquisition, writing, verification, and switching. Before further understanding the
OTA mechanism, we will first introduce the partition table and firmware startup process.

11.1.1 Overview of Partition Tables

The partition tables in ESP-IDF refer to the descriptive files that divide the flash into specific
functional areas at the user level. This book takes advanced https ota as an example,
abbreviated as the OTA upgrade example. In this example, the partitions two ota.csv

file under the partition_table component in ESP-IDF is used by default. The following
is a summary of the partitions_two_ota.csv partition table.
1. # Name, Type, SubType, Offset, Size, Flags

2. # Note: if you have increased the bootloader size, make sure to update the

offsets to avoid overlap

3. nvs, data, nvs, , 0x4000,

4. otadata, data, ota, , 0x2000,

5. phy_init, data, phy, , 0x1000,

6. factory, app, factory, , 1M,

7. ota_0, app, ota_0, , 1M,

8. ota_1, app, ota_1, , 1M,

From the overview above, each entry in the partition table consists of Name, Type, SubType,
Offset, Size, and Flags.

• The Name field is used to identify the name and should not exceed 16 bytes.

• The Type field can be specified as either app or data, or a number from 0 to 254 (or the
corresponding hexadecimal number 0x00 to 0xFE). It is mainly used to mark whether the
stored content is an application firmware or data.

• The length of the SubType field is 8 bits, and the specific marking content is related to
the Type field.

- When Type is defined as app, SubType can be specified as factory(0x00), ota_0
(0x10), ..., ota_15(0x1F), or test(0x20).

- When Type is defined as data, SubType can be specified as ota(0x00), phy(0x01),
nvs(0x02), nvs_keys(0x04), or a specific subtype for other components.

• The Offset and Size fields are used to define a specific area.

• The Flags field is used to mark whether encryption is enabled.

314 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf/tree/master/examples/system/ota/advanced_https_ota
https://github.com/espressif/esp-idf/blob/master/components/partition_table/partitions_two_ota.csv

Without any value filled in the Offset field, the partition table in the example is still valid.
This is because the position of the first entry in the partition table is determined, so the
address of the subsequent entry can be calculated from the Size field of the previous entry.
If the addresses of each entry in the partition table are not continuous, the Offset field
needs to be used to mark the starting address of each entry. For easy understanding, this
book has converted the example partition table into a figure, as shown in Figure 11.2.

Figure 11.2. Schematics of the partition table

From Figure 11.2, the starting address of the first entry in the partition table is 0x9000,
that is, the Offset field of the entry whose Name is nvs in partitions_two_ota.csv

is 0x9000, and the size of this entry is 0x4000. According to the calculation rules intro-
duced earlier, the Offset of the next entry is 0x9000 + 0x4000 = 0xd000. Calculated
sequentially, the Offset of the last ota_1 entry should be 0x210000.

The partitions_two_ota.csv partition table is divided into six areas: three data parti-
tions nvs, otadata, and phy_init are used to store NVS data, OTA data, and PHY initial-
isation data, respectively; and three application partitions used to store three different ap-
plication firmwares. As can be seen from the basic steps of OTA, at least two OTA application
partitions are required to perform OTA: [Type (app), SubType (ota_0/ota_1)] and
one OTA data partition [Type (data), SubType (ota)]. It may also include an op-
tional application partition, which is the factory application partition: [Type (app),

SubType (factory)].

• The OTA data partition is used to store information about the currently selected OTA
application partition. After the first OTA, the OTA data partition will be updated to specify
which OTA application partition to boot next. The size of the OTA data partition needs to
be set to 0x2000 to prevent problems caused by power failure during writing. The two

Chapter 11. Firmware Upgrade and Version Management 315

sectors are erased and written with matching data separately. If there is an inconsistency,
the counter field will be used to determine the sector with the latest data.

• The application partition is used to store firmware. The factory application partition is the
default application partition. If there is no OTA data partition or the OTA data partition
is invalid, the firmware of the factory application partition (if it exists) will be used first,
followed by the firmware of the OTA data partition. OTA will never update the contents
of the factory application partition.

11.1.2 Firmware Boot Process

In Section 11.1.1, we introduced that the starting address of the first entry in the partition
table is 0x9000. But why is the starting address not 0x0? And why is it 0x9000? To answer
these questions, let’s first look at Figure 11.3, which presents the specific contents stored in
a 4 MB flash.

Figure 11.3. Specific contents stored in a 4 MB flash

As can be seen from Figure 11.3, the flash is divided into eight areas: the address 0x00
stores the Bootloader, the address 0x8000 stores the partition table, and the latter 6 areas,
starting from 0x9000, is the area divided by the partition table, which you may already be
quite familiar with. Now we can answer the first question. The reason why 0x0 is not the
starting address is that it stores the Bootloader (not every 0x0 address of the chip flash stores
the Bootloader. ESP32 series chips store the Bootloader at 0x1000), which is used to load
and boot the application partition. In the programming design of Espressif chips, Bootloader
is called the secondary bootloader, which mainly increases the flexibility of flash partition
and facilitates the implementation of flash encryption, secure boot, and OTA functions. The

316 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

secondary bootloader loads the partition table from the offset address of flash at 0x8000
by default. The size of the partition table is 0x1000. The secondary bootloader will look
for the factory application partition and the OTA data partition from the partition table and
determine which partition to boot by querying the OTA data partition. Therefore, the second
question has also been answered.

The process from power-up to running the app_main() function on ESP32-C3 can be di-
vided into three steps:

(1) Bootstrapping is performed by the primary bootloader, which is stored in the ROM of
the ESP32-C3. Upon the chip reset, the CPU starts running immediately to determine
the boot mode and perform relevant operations. The secondary bootloader is then
loaded into RAM from the offset address 0x0 of the flash.

(2) Bootstrapping is performed by the secondary bootloader. The secondary bootloader
will first load the partition table from flash and then query the OTA data partition to
select a firmware from a particular application partition for loading. When all data is
processed, the secondary bootloader will verify the integrity of the firmware and look
for the entry address from the header of the binary firmware file, and then jump to that
address to execute the firmware. The firmware in the application partition has certain
statuses that affect its startup. These statuses are stored in the OTA data partition and
are defined in ESP-IDF by a set of enumerated variables (esp_ota_img_states_t).

• New firmware: defined by ESP_OTA_IMG_NEW, indicates whether the firmware is
being loaded by the Bootloader for the first time. This status will be changed to
ESP_OTA_IMG_PENDING_VERIFY in the Bootloader.

• Pending-for-verification Firmware: defined by ESP_OTA_IMG_PENDING_VERIFY,
indicates whether the firmware has been enabled. If the firmware remains in this sta-
tus on the second boot, the status will then be changed to ESP_OTA_IMG_ABORTED.

• Valid firmware: defined by ESP_OTA_IMG_VALID, indicates that the firmware is
functioning normally. Once marked with this status, the firmware can be booted
without restriction.

• Invalid firmware: defined by ESP_OTA_IMG_INVALID, indicates that the firmware
is not functioning properly. Once marked with this status, the firmware cannot be
rebooted.

• Aborted firmware: defined by ESP_OTA_IMG_ABORTED, indicates that there is an
exception with the firmware. Once marked with this status, the firmware cannot be
rebooted.

• Undefined firmware: defined by ESP_OTA_IMG_UNDEFINED. Once marked with

Chapter 11. Firmware Upgrade and Version Management 317

this status, the firmware can be booted without restriction.

(3) Application startup phase. After the bootstrapping performed by the secondary boot-
loader comes the application firmware startup phase, which includes all processes from
the start of the application to the creation and execution of the app_main() function.
This phase can be divided into three parts:

• Initialisation of hardware and basic ports.

• Initialisation of software services and the FreeRTOS system.

• Running the main task and calling the app_main() function.

11.1.3 Overview of the OTA Mechanism

For IoT devices, the first step of OTA is to acquire the new firmware. There are several
ways to do this, among which using Wi-Fi is one of the simplest and most convenient.
IoT devices can connect to the router via Wi-Fi, and then connect to the OTA server to
download the firmware via application layer protocols (e.g., HTTP, FTP). Here, we will
use advanced https ota as an example to introduce a way to download the firmware
via HTTPS. The example performs OTA with the esp_https_ota component, which uses
HTTPS as the download protocol. The following code is from advanced https ota

example.c, with some parts omitted for clarity:
1. static esp_err_t _http_client_init_cb(esp_http_client_handle_t http_client)

2. {

3. esp_err_t err = ESP_OK;

4. //Set HTTPS custom header

5. //err = esp_http_client_set_header(http_client, "Custom-Header", "Value");

6. return err;

7. }

8.

9. void advanced_ota_example_task(void *pvParameter)

10. {

11. ESP_LOGI(TAG, "Starting Advanced OTA example");

12.

13. //1. Configure the HTTPS connection and set the esp_https_ota parameter

14. esp_err_t ota_finish_err = ESP_OK;

15. esp_http_client_config_t config = {

16. .url = CONFIG_EXAMPLE_FIRMWARE_UPGRADE_URL,

17. .cert_pem = (char *)server_cert_pem_start,

18. .timeout_ms = CONFIG_EXAMPLE_OTA_RECV_TIMEOUT,

19. .keep_alive_enable = true,

20. };

21.

22. esp_https_ota_config_t ota_config = {

23. .http_config = &config,

318 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://github.com/espressif/esp-idf/tree/master/examples/system/ota/advanced_https_ota
https://github.com/espressif/esp-idf/blob/master/examples/system/ota/advanced_https_ota/main/advanced_https_ota_example.c
https://github.com/espressif/esp-idf/blob/master/examples/system/ota/advanced_https_ota/main/advanced_https_ota_example.c

24. .http_client_init_cb = _http_client_init_cb,//Register esp_http_client

25. // Callback function called after initialization

26. };

27.

28. //2. Enable OTA via esp_https_ota_begin, returning HTTP/HTTPS results

29. esp_https_ota_handle_t https_ota_handle = NULL;

30. esp_err_t err = esp_https_ota_begin(&ota_config, &https_ota_handle);

31. if (err ! = ESP_OK) {

32. ESP_LOGE(TAG, "ESP HTTPS OTA Begin failed");

33. vTaskDelete(NULL);

34. }

35.

36. //3. When connected, the information of new firmware can be obtained

37. //via esp_https_ota_get_img_desc, which can be used for verification

38. esp_app_desc_t app_desc;

39. err = esp_https_ota_get_img_desc(https_ota_handle, &app_desc);

40. if (err ! = ESP_OK) {

41. ESP_LOGE(TAG, "esp_https_ota_read_img_desc failed");

42. goto ota_end;

43. }

44. err = validate_image_header(&app_desc);

45. if (err ! = ESP_OK) {

46. ESP_LOGE(TAG, "image header verification failed");

47. goto ota_end;

48. }

49.

50. //4. Receive and write firmware by iterating esp_https_ota_perform(),

51. //and jump out of the loop when HTTPS is not in receiving mode.

52. while (1) {

53. err = esp_https_ota_perform(https_ota_handle);

54. if (err ! = ESP_ERR_HTTPS_OTA_IN_PROGRESS) {

55. break;

56. }

57. /.

58. ...

59. }

60. //5. Verify the firmware integrity, and call esp_https_ota_finish or

61. //esp_https_ota_abort to release the HTTP/HTTPS connection.

62. //Esp_https_ota_finish will upgrade the OTA data partition

63. //and switch the next boot to the new firmware.

64. if (esp_https_ota_is_complete_data_received(https_ota_handle) ! = true) {

65. //OTA firmware not fully received. Users can customise handling options

66. ESP_LOGE(TAG, "Complete data was not received.");

67. } else {

68. ota_finish_err = esp_https_ota_finish(https_ota_handle);

69. if ((err == ESP_OK) && (ota_finish_err == ESP_OK)) {

70. ESP_LOGI(TAG, "ESP_HTTPS_OTA upgrade successful.Rebooting ...");

Chapter 11. Firmware Upgrade and Version Management 319

71. vTaskDelay(1000 / portTICK_PERIOD_MS);

72. esp_restart();

73. } else {

74. if (ota_finish_err == ESP_ERR_OTA_VALIDATE_FAILED) {

75. ESP_LOGE(TAG, "Image validation failed, image is corrupted");

76. }

77. ESP_LOGE(TAG, "ESP_HTTPS_OTA upgrade failed 0x%x",

78. ota_finish_err);

79. vTaskDelete(NULL);

80. }

81. }

82.

83. ota_end:

84. esp_https_ota_abort(https_ota_handle);

85. ESP_LOGE(TAG, "ESP_HTTPS_OTA upgrade failed");

86. vTaskDelete(NULL);

87. }

(1) Acquiring firmware

The code above downloads the firmware using HTTPS protocol, and the HTTPS opera-
tions are encapsulated in ESP-IDF. You only need to configure the esp_http_client
_config_t structure, where you can pass the certificate and enable the TLS pro-
tocol to secure the transmitted data. After configuring the HTTPS connection pa-
rameters, the configurations should be passed to the esp_https_ota_config_t

structure, which provides a callback function to facilitate setting the HTTPS request
header information. Header information is generally used to declare the length and
data format of the HTTPS Body to the server. After the configuration, you can call
esp_https_ota_begin() for connection. The function will determine the result
based on the HTTPS status code returned. Upon successful HTTPS connection, subse-
quent calls to the esp_https_ota_perform() function to request firmware can be
made recursively.

(2) Writing firmware

The esp_https_ota_perform() function continuously sends request information
to the server and writes each set of data returned by the server to the flash. This
writing process is implemented within the function by calling esp_ota_write().

(3) Verifying firmware

Considering the limited resources of the receiving device and the not-always-ideal net-
work environment, it is often necessary to send HTTPS requests several times to down-
load the firmware completely. ESP-IDF provides the esp_https_ota_is_complete
_data_received() function to determine whether the firmware has been received

320 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

completely by calculating the size of the firmware. Once completely received, the
esp_https_ota_finish() function will be called to terminate the HTTPS connec-
tion and release any occupied resources. Simply comparing the firmware size to deter-
mine if the firmware is valid is not optimal, we need to also verify the SHA-256 value
of the firmware to ensure that the downloaded firmware is identical to the original
firmware. Calling esp_https_ota_finish() will complete the verification auto-
matically. If secure boot is enabled, the relevant checks will also be performed at this
point. For more details about secure boot, please refer to Section 13.4.2.

(4) Switching firmware

The esp_https_ota_finish() function not only releases HTTPS resources and
verifies the firmware, but also automatically rewrites the OTA partition upon success-
ful verification. At the same time, the function updates the status of this downloaded
firmware to “undefined” (ESP_OTA_IMG_UNDEFINED). After the preparations are
done, the firmware that is rebooted by calling esp_restart() would be the new
firmware. Undefined firmware in this case means that the firmware can be booted
without restriction as long as the Bootloader rollback is not enabled.

11.2 Firmware Version Management
Marking firmware with different features as different versions is an important means of
facilitating maintenance later on. For version information, ESP-IDF provides a number of
marking fields that can be used with the rollback/anti-rollback function to meet most of the
needs of version control.

11.2.1 Firmware Marking

There are four editable fields – secure_version, project_version, project_name,
and App version, and two non-editable fields – idf_ver and Compile time and

date.

• secure version: used to set the secure version of the chip. The secure version number
is stored in eFuse and can mark up to 16 versions. The way to enable it is as follows:
(Top) → Bootloader config

...

...

[*] Enable app rollback support

[*] Enable app anti-rollback support

(0) eFuse secure version of app (NEW)

(16) Size of the eFuse secure version field (NEW)

...

...

Chapter 11. Firmware Upgrade and Version Management 321

• project version: used to set the project version. The way to enable it is as follows:
(Top) → Application manager

...

...

[*] Get the project version from Kconfig

(1) Project version

...

...

• project name: the project name is set in the CMakeLists.txt file under the project
directoey. Take the advanced_https_ota project as an example, the way to enable the
field is as follows:
1. ...

2. ...

3. include($ENV{IDF_PATH}/tools/cmake/project.cmake)

4. project(advanced_https_ota)

5. ...

6. ...

project(X) is the name of the marked project.

• Compile time and date and idf ver (ESP-IDF Version) will be assigned automati-
cally during compilation with the following log printed:
...

...

I (304) cpu_start: Compile time: Mar 14 2022 18 : 44 : 58

I (316) cpu_start: ESP-IDF: v4.3.2

...

...

Both the secure version number and project version number can be used to mark firmware
version information but with different focuses and realizations. The secure version number
is written in the chip’s eFuse. It cannot be changed once written and only higher versions
of firmware are allowed to be written to the chip afterward, making it possible to manage
the major updates safely and effectively. As major updates are generally related to security,
such version numbers are called secure version numbers. The project version number is
stored in flash along with the firmware and can be changed at will during each compilation.
The device does not actively check this information during updates, and its usage is entirely
determined by the developer. In practical development applications, due to the usage limit
of the secure version number, an update of the secure version number is generally defined
as containing major functional updates and fixing security bugs, while the update of the
project version number is used as a business-level functional update.

322 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

11.2.2 Rollback and Anti-Rollback

The main purpose of application rollback is to ensure that the device can be rolled back
to the previous version in case of exceptions after an update, without affecting the nor-
mal use of the device. When rollback is enabled, the firmware will be marked as a new
firmware (ESP_OTA_IMG_NEW) once the firmware verification is completed. Upon re-
boot, the Bootloader will select this firmware and re-mark it as pending-for-verification
(ESP_OTA_IMG_PENDING_VERIFY). When running the app_main() function, two sce-
narioes may occur:

(1) Normally functioning

After testing and confirming that everything is working properly, the developer calls
the esp_ota_mark_app_valid_cancel_rollback() function to mark the cur-
rent running firmware as a valid firmware (ESP_ OTA_IMG_VALID). After that, the
firmware can be booted without any restrictions.

(2) Encountering serious errors

It will trigger an automatic secondary reboot, and the Bootloader will directly mark
the firmware as an aborted firmware (ESP_OTA_IMG_ABORTED) and roll back to the
previous version. After self-testing, the developer should confirm that there is an error
and call esp_ota_mark_app_invalid_rollback_and_reboot() to mark the
running version as an invalid firmware. The firmware will then be rolled back to the
previous version automatically and cannot be rebooted again.

Another function of the secure version number is to prevent the firmware from rolling back
to a lower secure version. When selecting the bootable application, the Bootloader will
check the secure version number extrally. Only if the secure version number of the firmware
is equal to or higher than that stored in the chip’s eFuse, the firmware will be selected. The
new secure version number will be updated after the firmware status is marked as valid
(ESP_OTA_IMG_VALID).

Both rollback and anti-rollback can be enabled through menuconfig as follows:
(Top) → Bootloader config

...

...

[*] Enable app rollback support

[*] Enable app anti-rollback support

(0) eFuse secure version of app (NEW)

(16) Size of the eFuse secure version field (NEW)

...

...

Chapter 11. Firmware Upgrade and Version Management 323

11.3 Practice: Over-the-air (OTA) Example

11.3.1 Upgrade Firmware Through a Local Host

In the ESP-IDF example, the procedure of OTA is shown in Figure 11.4.

Figure 11.4. Procedure of over-the-air (OTA)

(1) Enabling OTA server

Before running the OTA example, you need to first create the HTTPS service and apply for a
certificate. The certificate can be self-signed by executing openssl req -x509 -newkey

rsa:2048 -keyout ca_key.pem -out ca_cert.pem -days 365 -nodes. Logs
are as follows:
Generating a RSA private key

. +++++

....................+++++

writing new private key to ’ca_key.pem’

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’ , the field will be left blank.

...

...

(2) Enabling HTTPS service

The command openssl s_server -WWW -key ca_key.pem -cert ca_cert.pem

-port 8070 will enable an HTTPS service with port 8070 on the local machine. The logs
are as follows:

324 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

...

Using default temp DH parameters

ACCEPT

...

...

Upon successful HTTPS connection, the logs are as follows:
139783954665920:error:14094416:SSL routines:ssl3_read_bytes:sslv3 alert

certificate unknown:../ssl/record/rec_layer_s3.c:1528:SSL alert number 46

FILE:advanced_https_ota.bin

...

...

(3) Using the esp https ota component to perform OTA

Before the OTA test, let’s first look at how to write an OTA program. The following sample
code comes from esp-idf/examples/system/ota/advanced https ota/main/

advanced https ota example.c:
1. void app_main(void)

2. {

3. //Initialize NVS

4. esp_err_t err = nvs_flash_init();

5. if (err == ESP_ERR_NVS_NO_FREE_PAGES || err ==

6. ESP_ERR_NVS_NEW_VERSION_FOUND) {

7. ESP_ERROR_CHECK(nvs_flash_erase());

8. err = nvs_flash_init();

9. }

10. ESP_ERROR_CHECK(err);

11.

12. ESP_ERROR_CHECK(esp_netif_init());

13. ESP_ERROR_CHECK(esp_event_loop_create_default());

14.

15. //Initialize connection

16. ESP_ERROR_CHECK(example_connect());

17.

18. //firmware verification

19. const esp_partition_t *running = esp_ota_get_running_partition();

20. esp_ota_img_states_t ota_state;

21. if (esp_ota_get_state_partition(running, &ota_state) == ESP_OK) {

22. if (ota_state == ESP_OTA_IMG_PENDING_VERIFY) {

23. if (esp_ota_mark_app_valid_cancel_rollback() == ESP_OK) {

24. ESP_LOGI(TAG, "App is valid, rollback cancelled successfully");

25. } else {

26. ESP_LOGE(TAG, "Failed to cancel rollback");

27. }

28. }

29. }

Chapter 11. Firmware Upgrade and Version Management 325

https://github.com/espressif/esp-idf/blob/master/examples/system/ota/advanced_https_ota/main/advanced_https_ota_example.c
https://github.com/espressif/esp-idf/blob/master/examples/system/ota/advanced_https_ota/main/advanced_https_ota_example.c

30.

31. #if CONFIG_EXAMPLE_CONNECT_WIFI

32. //Set PS mode

33. esp_wifi_set_ps(WIFI_PS_NONE);

34. #endif

35. //Create Over-the-air (OTA) task

36. xTaskCreate(&advanced_ota_example_task, "advanced_ota_example_task",

37. 1024 * 8, NULL, 5, NULL);

38. }

The above code snippet demonstrates the following procedure:

a. Initialise NVS with the nvs_flash_init() function, which is generally the first step
in writing an ESP32-C3 application.

b. Initialise the netif layer and connect to Wi-Fi with the example_connect() func-
tion. This function is generic and is realised in the protocol_examples_common

component. You can replace it with your own Wi-Fi connection function.

c. If rollback is enabled, then you need to set the firmware status.

d. (Optional) Set the PS mode to WIFI_PS_NONE with the esp_wifi_set_ps() func-
tion to disable the power saving mode and achieve maximum data throughput.

e. Create an OTA task and complete the firmware receiving process in the task. For
proceduce of advanced_ota_ example_task, please refer to Section 11.1.3.

With the basic understanding of the above example, we can now proceed to the OTA test.
Please perform and complete the following actions successively:

(1) Set the target chip to ESP32-C3 with the following command:

$ idf.py set-target esp32c3

(2) Set Wi-Fi information.

Run idf.py menuconfig and edit the Wi-Fi SSID and password as follows:
(Top) → Example Connection Configuration

Espressif IoT Development Framework Configuration

[*] connect using WiFi interface

(Xiaomi_32BD) WiFi SSID

(12345678) WiFi Password

[] connect using Ethernet interface

[*] Obtain IPv6 address

Preferred IPv6 Type (Local Link Address) --->

(3) Set OTA information.

Fill in Firmware Upgrade URL and select skipping server certificate CN fieldcheck and
firmware version check.

326 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

(https://192.168.31.177:8070/advanced_https_ota.bin) Firmware Upgrade URL

[*] Skip server certificate CN fieldcheck

[*] Skip firmware version check

(5000) OTA Receive Timeout

(4) Build firmware with the command idf.py build.

After building, extract advanced_https_ota.bin under the build directory to the di-
rectory of the HTTPS server, namely, the directory where the openssl s_server opera-
tion is performed.

(5) Download firmware.

Run idf.py flash monitor to download the firmware and open monitor.

Upon completion of all operations, ESP32-C3 will power up and connect to the set Wi-Fi
and reboot after downloading the firmware from the set URL.

11.3.2 Upgrade Firmware Through ESP RainMaker

A more common solution is to update firmware through a cloud platform. In this sec-
tion, we’ll introduce how to push update messages from cloud to the device with ESP
RainMaker. ESP RainMaker uses esp_https_ota component as well. With the code
of OTA integrated in the ESP RainMaker SDK, you can enable OTA by merely calling the
esp_rmaker_ota_enable() function. Note that while ESP RainMaker provides two
ways of OTA, you need to select receiving OTA messages using topics. By subscribing topics
related to OTA, you can receive MQTT messages, parse out the URL of the firmware, and
push the progress and final status of the current update through these topics. The code for
the ESP RainMaker OTA is stored under the esp-rainmaker/components/esp rain

maker/src/ota directory. The code related to firmware downloads is stored in the source
file esp_rmaker_ota.c under the same directory, as well as the following code:
1. //ESP RainMaker OTA status

2. char *esp_rmaker_ota_status_to_string(ota_status_t status)

3. {

4. switch (status) {

5. case OTA_STATUS_IN_PROGRESS:

6. return "in-progress";

7. case OTA_STATUS_SUCCESS:

8. return "success";

9. case OTA_STATUS_FAILED:

10. return "failed";

11. case OTA_STATUS_DELAYED:

12. return "delayed";

13. default:

14. return "invalid";

15. }

Chapter 11. Firmware Upgrade and Version Management 327

https://github.com/espressif/esp-rainmaker/tree/master/components/esp_rainmaker/src/ota
https://github.com/espressif/esp-rainmaker/tree/master/components/esp_rainmaker/src/ota

16. return "invalid";

17. }

18.

19.esp_err_t esp_rmaker_ota_report_status(esp_rmaker_ota_handle_t ota_handle,

20. ota_status_t status,

21. char *additional_info)

22. {

23.

24. if (ota->type == OTA_USING_PARAMS) {

25. err = esp_rmaker_ota_report_status_using_params(ota_handle, status,

26. additional_info);

27. } else if (ota->type == OTA_USING_TOPICS) {

28. err = esp_rmaker_ota_report_status_using_topics(ota_handle, status,

29. additional_info);

30. }

31.

32. }

There are four OTA statuses in ESP RainMaker: firmware acquisition in progress (OTA_
STATUS_IN_PROGRESS), OTA succeeded (OTA_STATUS_SUCCESS), OTA failed (OTA_
STATUS_FAILED), and delayed (OTA_STATUS_DELAYED).

Firmware acquisition in progress corresponds to the status of downloading firmware, which
should be reported to the cloud platform when the esp_https_ota_begin() function is
called, and the cloud platform will then update the icon correspondingly. OTA succeeded
and OTA failed indicate the results of firmware download and verification. Delayed indicates
that the device is currently not available to process the request, and the OTA status can later
be updated through the esp_rmaker_ota_report_status() function.
1. //Firmware information verification

2. static esp_err_t validate_image_header(esp_rmaker_ota_handle_t ota_handle,

3. esp_app_desc_t *new_app_info)

4. {

5. if (new_app_info == NULL) {

6. return ESP_ERR_INVALID_ARG;

7. }

8.

9. //Firmware status aquisition

10. const esp_partition_t *running = esp_ota_get_running_partition();

11. esp_app_desc_t running_app_info;

12. if (esp_ota_get_partition_description(running, &running_app_info) ==

13. ESP_OK) {

14. ESP_LOGD(TAG, "Running firmware version: %s",running_app_info.version);

15. }

16.

17. //Verify project version number

18. #ifndef CONFIG_ESP_RMAKER_SKIP_VERSION_CHECK

328 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

19. if (memcmp(new_app_info->version, running_app_info.version,

20. sizeof(new_app_info->version)) == 0){

21. ESP_LOGW(TAG, "Current running version is same as the new.

22. We will not continue the update.");

23. esp_rmaker_ota_report_status(ota_handle, OTA_STATUS_FAILED,

24. "Same version received");

25. return ESP_FAIL;

26. }

27. #endif

28.

29. //Verify project name

30. #ifndef CONFIG_ESP_RMAKER_SKIP_PROJECT_NAME_CHECK

31. if (memcmp(new_app_info->project_name, running_app_info.project_name,

32. sizeof(new_app_info->project_name)) ! = 0){

33. ESP_LOGW(TAG, "OTA Image built for Project: %s. Expected: %s",

34. new_app_info->project_name, running_app_info.project_name);

35. esp_rmaker_ota_report_status(ota_handle, OTA_STATUS_FAILED,

36. "Project Name mismatch");

37. return ESP_FAIL;

38. }

39. #endif

40.

41. return ESP_OK;

42. }

ESP RainMaker manages firmware by verifying the project version number and the project
name. Only when the new and old firmware of the same project name are verified to
have different project version numbers, the firmware downloading will then be allowed to
continue. Generally speaking, the project version number is generally incremented, which
is more conducive for version control. By comparing project names, you can prevent any
accidental pushing of other products’ firmware.
1.static esp_err_t esp_rmaker_ota_default_cb(esp_rmaker_ota_handle_t ota_handle,

2. esp_rmaker_ota_data_t *ota_data)

3. {

4.

5. //OTA http parameter configuration

6. esp_err_t ota_finish_err = ESP_OK;

7. esp_http_client_config_t config = {

8. .url = ota_data->url,

9. .cert_pem = ota_data->server_cert,

10. .timeout_ms = 5000,

11. .buffer_size = DEF_HTTP_RX_BUFFER_SIZE,

12. .buffer_size_tx = buffer_size_tx

13. };

14. #ifdef CONFIG_ESP_RMAKER_SKIP_COMMON_NAME_CHECK

15. config.skip_cert_common_name_check = true;

Chapter 11. Firmware Upgrade and Version Management 329

16. #endif

17.

18. //Report update status

19. esp_rmaker_ota_report_status(ota_handle, OTA_STATUS_IN_PROGRESS,

20. "Starting OTA Upgrade");

21.

22. ...

23. ...

24. //Establish HTTPS connection and prepare to download firmware

25. esp_err_t err = esp_https_ota_begin(&ota_config, &https_ota_handle);

26. if (err ! = ESP_OK) {

27. ESP_LOGE(TAG, "ESP HTTPS OTA Begin failed");

28. esp_rmaker_ota_report_status(ota_handle, OTA_STATUS_FAILED,

29. "ESP HTTPS OTA Begin failed");

30. return ESP_FAIL;

31. }

32.

33. //Aquire firmware information for verification

34. esp_app_desc_t app_desc;

35. err = esp_https_ota_get_img_desc(https_ota_handle, &app_desc);

36. if (err ! = ESP_OK) {

37. ESP_LOGE(TAG, "esp_https_ota_read_img_desc failed");

38. esp_rmaker_ota_report_status(ota_handle, OTA_STATUS_FAILED,

39. "Failed to read image decription");

40. goto ota_end;

41. }

42. err = validate_image_header(ota_handle, &app_desc);

43. if (err ! = ESP_OK) {

44. ESP_LOGE(TAG, "image header verification failed");

45. goto ota_end;

46. }

47.

48. esp_rmaker_ota_report_status(ota_handle, OTA_STATUS_IN_PROGRESS,

49. "Downloading Firmware Image");

50. int count = 0;

51.

52. // Download firmware cyclically

53. while (1) {

54. err = esp_https_ota_perform(https_ota_handle);

55. if (err ! = ESP_ERR_HTTPS_OTA_IN_PROGRESS) {

56. break;

57. }

58.

59. }

60.

61. // Release HTTPS resource after downloading and start verification

62. ota_finish_err = esp_https_ota_finish(https_ota_handle);

330 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

63. if ((err == ESP_OK) && (ota_finish_err == ESP_OK)) {

64. //Report OTA succeeded status to cloud after successful verification

65. ESP_LOGI(TAG, "OTA upgrade successful. Rebooting in %d seconds..." ,

66. OTA_REBOOT_TIMER_SEC);

67. esp_rmaker_ota_report_status(ota_handle, OTA_STATUS_SUCCESS,

68. "OTA Upgrade finished successfully");

69. esp_rmaker_reboot(OTA_REBOOT_TIMER_SEC);

70. return ESP_OK;

71. }

72.

73. }

The esp_rmaker_ota_default_cb() function is the default OTA callback function in
ESP RainMaker and will be called once an OTA message is received from the cloud. The
procedure of this function is similar to that of the OTA example function introduced in
Section 11.1.3. The difference is that the esp_rmaker_ota_default_cb() function
includes the reporting of OTA status, which will update the current OTA progress of the
device to the cloud platform in time.
1. esp_err_t esp_rmaker_ota_enable(esp_rmaker_ota_config_t *ota_config,

2. esp_rmaker_ota_type_t type)

3. {

4.//Acquire partition information and verify firmware vadility through callback

5. const esp_partition_t *running = esp_ota_get_running_partition();

6. esp_ota_img_states_t ota_state;

7. if (esp_ota_get_state_partition(running, &ota_state) == ESP_OK) {

8. if (ota_state == ESP_OTA_IMG_PENDING_VERIFY) {

9. ESP_LOGI(TAG, "First Boot after an OTA");

10. //Run diagnostic function

11. bool diagnostic_is_ok = true;

12. if (ota_config->ota_diag) {

13. diagnostic_is_ok = ota_config->ota_diag();

14. }

15. if (diagnostic_is_ok) {

16. ESP_LOGI(TAG, "Diagnostics completed successfully!

17. Continuing execution ...");

18. esp_ota_mark_app_valid_cancel_rollback();

19. } else {

20. ESP_LOGE(TAG, "Diagnostics failed! Start rollback to the

21. previous version ...");

22. esp_ota_mark_app_invalid_rollback_and_reboot();

23. }

24. }

25. }

26.

27. // Over-the-air (OTA) task callback function

28. if (ota_config->ota_cb) {

Chapter 11. Firmware Upgrade and Version Management 331

29. ota->ota_cb = ota_config->ota_cb;

30. } else {

31. ota->ota_cb = esp_rmaker_ota_default_cb;

32. }

33.

34. return err;

35. }

The OTA part in ESP RainMaker encapsulates the self-test segment of the rollback function.
You can input a self-test function with a Boolean return value through the esp_rmaker_ota
_config_t structure. When calling the esp_rmaker_ota_enable() function to enable
OTA, once the current firmware status is found to be pending for verification (ESP_OTA_IMG_
PENDING_VERIFY), the self-test function input previously will be called by the function
pointer, and the current firmware status will be set through the return value of the self-
test function. server_cert in the esp_rmaker_ota_config_t structure points to the
server-side certificate. ESP RainMaker uses AWS S3 bucket storage service, and you can
pass in the certificate directly via the macro ESP_RMAKER_OTA_DEFAULT_SERVER_CERT,
which is used during OTA to perform verifications and prevent DNS spoofing. You can up-
load the new firmware in the management backend of ESP RainMaker. The project version
of the new firmware must be different from the version expected to be updated to, and there
are two ways to modify the version in ESP RainMaker:

(1) Modify the project version number introduced in Section 11.2.1.

(2) Modify the CMakeLists.txt file by adding set(PROJECT_VER "1.0"). You may
refer to the example about this part.

Once the new firmware is built, you can upload the new firmware as shown in Figure 11.5.

Figure 11.5. Uploading new firmware

332 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Once the firmware is uploaded, you can enable the OTA task as shown in Figure 11.6. The
procedure of booting the OTA task is as follows:

Figure 11.6. Boot the OTA task

(1) Select the firmware used for OTA from the list.

(2) Click “Start OTA” for the firmware.

(3) Fill in information of the OTA task and select the node to be updated. When the
“Force Push” option is selected, online nodes can receive OTA messages immediately.
Otherwise, nodes will obtain URLs for OTA based on the defined OTA policy (checks
during startup, periodic checks, etc.), which may cause delays.

Figure 11.7. Interface of OTA Job Monitor

Chapter 11. Firmware Upgrade and Version Management 333

The OTA Job Monitor (see Figure 11.7) provides real-time feedback on the status of OTA,
including the information available to users and the functions implemented.

• After initiating OTA successfully, the OTA status can be checked in the task details of
the current OTA job, which are reported by the device.

• The OTA Job Monitor will provide an overview of the task and the status of each node
can be checked.

• The OTA task can be cancelled midway, but the nodes which have already obtained
the URL will continue upgrading.

11.4 Summary
This chapter mainly introduces the mechanism and procedures of OTA. Firstly, it describes
the basic procedures and ways of performing OTA. Then it presents the functions of the
partition table and the fields related to OTA. In actual mass production, it is also necessary
to enable the rollback and anti-rollback functions accordingly to further improve the stability
and reliability of the device. Finally, according to the practical example provided, you can
either complete the firmware update through the local host or push the update message to
the device from the cloud through ESP RainMaker.

334 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Chapter
12

Power Management and
Low-Power Optimisation

With the wide application of IoT products, people can see more and more IoT products
in daily life, such as smart watches, smart sockets, smart light bulbs, smart speakers, etc.
Many of these IoT products are under pressure to reduce their power consumption because
they are powered by battery or require certification for energy consumption. For exam-
ple, the CEC Tile 20 specification mandates that smart bulbs must not exceed a standby
power consumption of 0.2W to obtain energy consumption certification in California, USA.
Battery-powered smartwatches also aim to extend their working hours. Developers of such
IoT products must prioritise power consumption as a crucial consideration during product
development. They must have a comprehensive understanding of the power consumption
characteristics of the chips they use, and be skilled in utilising the relevant chips in practical
IoT projects. To achieve this, they should prioritise using low-power wireless communication
technologies, such as Bluetooth LE, and employ low-power circuit design in their implemen-
tations. This ensures that power consumption is minimised throughout the development
process.

In low-power scenarios, the lifetime of a battery-powered device and its ability to pass en-
ergy certification are often determined by its average current. This average current is influ-
enced by several factors, including the current in different low-power modes, the operating
current in active states, the duration of low-power mode activation or deactivation, and the
processing power of the CPU. ESP32-C3 provides chip-level support for low-power scenar-
ios. It employs advanced power management technology to switch between different power
modes and features intelligent low-power peripherals that help reduce CPU wakeup times,
resulting in further reduction of overall power consumption.

12.1 ESP32-C3 Power Management
Power management algorithm included in ESP-IDF can adjust the advanced peripheral bus
(APB) frequency, CPU frequency, and put the chip into Light-sleep mode to run an applica-
tion at smallest possible power consumption, given the requirements of application compo-
nents. Additionally, the chip automatically enters Light-sleep mode when idle, reducing the
power consumption during application runs. The ESP32-C3’s various low-power modes are
discussed in detail in Section 12.2. Enabling power management features comes at the cost

336

of increased interrupt latency. Extra latency depends on several factors, such as the CPU
frequency, single/dual core mode, whether frequency switch is required.

Applications can acquire/release locks to control the power management algorithm. When
an application acquires a lock, the operation of power management algorithm is restricted.
When the lock is released, such restrictions are removed. Power management locks have
acquire/release counters. If the lock has been acquired a number of times, it needs to be
released the same number of times to remove associated restrictions.

ESP32-C3 supports three types of locks described in Table 12.1.

Table 12.1. Power management locks

Power management lock Description

SP_PM_CPU_FREQ_MAX

Requests CPU frequency to be at the maximum value set with
esp_pm_configure(). For ESP32-C3, this value can be set to 80 MHz,
160 MHz, or 240 MHz.

ESP_PM_APB_FREQ_MAX
Requests the APB frequency to be at the maximum supported value. For
ESP32-C3, this is 80 MHz.

ESP_PM_NO_LIGHT_SLEEP Disable automatic switching to Light-sleep mode

Applications can acquire or release power management locks in a way that can accommo-
date scenarios where power management is not required. For example, driver for a pe-
ripheral clocked from APB can request the APB frequency to be set to 80 MHz while the
peripheral is used; RTOS can request the CPU to run at the highest configured frequency
while there are tasks ready to run; A peripheral driver may need interrupts to be enabled,
which means it will have to request disabling Light-sleep mode.

Since requesting higher APB or CPU frequencies or disabling Light-sleep mode causes higher
current consumption, please keep the usage of power management locks by components to
a minimum.

12.1.1 Dynamic Frequency Scaling

When power management is enabled, the peripheral bus (APB) frequency and CPU fre-
quency may change during operation. This process is called Dynamic Frequency Scaling
(DFS). When DFS is enabled, the APB frequency can be changed multiple times within a
single RTOS tick. The APB frequency change does not affect the operation of some periph-
erals, while other peripherals may have issues. For example, Timer Group peripheral timers
will keep counting, however, the speed at which they count will change proportionally to
the APB frequency. Therefore, developers should understand which peripherals will be af-
fected by DFS and which peripherals will not. With the continuous improvement of ESP-IDF

Chapter 12. Power Management and Low-Power Optimisation 337

development, more and more peripheral drivers will not be affected by DFS.

The following peripherals are not affected by DFS when clocked from a specific clock source:

• UART: If REF_TICK is used as the clock source, UART is not affected by DFS. Other-
wise, it will be affected by DFS.

• LEDC: If REF_TICK is used as the clock source, LEDC is not affected by DFS. Other-
wise, it will be affected by DFS.

• RMT: If REF_TICK or XTAL is used as the clock source, RMT is not affected by DFS.

Currently, the following peripheral drivers are not affected by DFS. These drivers will acquire
the ESP_PM_APB_FREQ_MAX lock for the duration of the transaction and release the lock
upon the completion of the the transaction automatically.

• SPI host

• I2C

• I2S (if an APLL clock is used, I2S acquires ESP_PM_NO_LIGHT_SLEEP power man-
agement lock.)

• SPI slave: between calls to spi_slave_initialize() and spi_slave_free(),
SPI slave is not affected by DFS.

• Wi-Fi: between calls to esp_wifi_start() and esp_wifi_stop(), Wi-Fi is not
affected by DFS. In Modem-sleep mode, when Wi-Fi is enabled, the chip releases the
ESP_PM_APB_FREQ_MAX power management lock upon turning off the RF module.

• TWAI: between calls to twai_driver_install() and twai_driver_uninstall
(), TWAI is not affected by DFS.

• Bluetooth: between calls to esp_bt_controller_enable() and esp_bt_con

troller_disable(), Bluetooth is not affected by DFS. In Modem-sleep mode, when
Bluetooth is enabled, the chip releases ESP_PM_APB_FREQ_MAX power management
lock upon turning off the RF module, but still holds the ESP_PM_NO_LIGHT_SLEEP
power management lock unless CONFIG_BTDM_CTRL_LOW_POWER_CLOCK is config-
ured to the 32 kHz external crystal oscillator.

The following peripheral drivers are affected by DFS, so applications need to acquire or
release locks themselves.

• PCNT

• Sigma-delta

• Timer Group

338 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

12.1.2 Power Management Configuration

Generally, automatic Light-sleep mode is used in conjunction with Modem-sleep mode and
power management features, and the detailed configuration about how to enable automatic
Light-sleep mode is described in Section 12.2.2.

12.2 ESP32-C3 Low-Power Mode
ESP32-C3 has an advanced Power Management Unit (PMU), which can flexibly power up
different power domains of the chip, to achieve the best balance among chip performance,
power consumption, and wakeup latency. ESP32-C3 features four predefined power modes
that not only enable developers to fulfill the requirements of various IoT application scenar-
ios but also pass rigorous power consumption certification tests. These power modes have
been successfully utilised in numerous IoT projects, including smart lighting. ESP32-C3 of-
fers an array of low-power solutions for these power modes, which can serve as a reference
for developers to select and configure based on their specific requirements. The four power
modes are as follows:

• Active mode: The CPU and chip RF are powered on. The chip can receive, transmit,
or listen.

• Modem-sleep mode: The CPU is operational, and the clock speed can be reduced. Wi-
Fi base band, Bluetooth LE base band, and RF are disabled, but Wi-Fi and Bluetooth
LE connection can remain active.

• Light-sleep mode: The CPU is paused. Wi-Fi base band, Bluetooth LE base band, and
RF are disabled. Any wakeup events (MAC, host, RTC timer, or external interrupts) will
wake up the chip. In automatic Light-sleep mode, Wi-Fi or Bluetooth LE can remain
connected.

• Deep-sleep mode: CPU and most peripherals are powered down. Only the RTC mem-
ory and RTC peripherals are powered on. Wi-Fi base band, Bluetooth LE base band,
and RF module are disabled.

By default, ESP32-C3 will enter Active mode after reset. In Active mode, all parts of ESP32-
C3 work properly. When the CPU is not needed to operate continuously, such as when
waiting for external activity to wake up, the chip can enter one of the low-power modes.
Developers can select various power modes based on specific power consumption, wakeup
delay, and available wakeup source requirements. With the exception of the Active mode,
the other three modes are low-power modes. Table 12.2 lists the differences between the
three low-power modes.

Chapter 12. Power Management and Low-Power Optimisation 339

Table 12.2. Differences between the three low-power modes

Automatic Compulsory

Wi-Fi connection and
Bluetooth LE connection

Remain Remain Disconnected Disconnected

GPIO Remain Remain

Wi-Fi Off Off

System clock On Off

RTC On On

CPU On Off

Part Modem-sleep
Light-sleep

Deep-sleep

Remain

Off

Off

On

Paused

12.2.1 Modem-sleep mode

Currently, Modem-sleep mode on ESP32-C3 is only applicable when Wi-Fi Station connec-
tion and Bluetooth LE connection are active. The mode takes effect after the Wi-Fi Station
connection router and Bluetooth LE are connected, and the chip periodically switches be-
tween Active mode and Modem-sleep mode. In Modem-sleep mode, the baseband of Wi-Fi
and Bluetooth LE is clock gated or turned off. When the RF module is turned off, ESP32-C3
can be automatically woken up without any delay (also, this can be done without configur-
ing any wakeup source). After waking up from Modem-sleep mode, the chip’s RF module
switches from Modem-sleep mode to Active mode, causing an increase in power consump-
tion.

ESP32-C3 uses the Wi-Fi Delivery Traffic Indication Message (DTIM) beacon mechanism to
maintain a connection to the router. In Modem-sleep mode, ESP32-C3 will power off the
RF module between two DTIM beacons to save power, and automatically wake up the RF
module just before the next DTIM beacon arrives. The duration of sleep is determined by
the router’s DTIM beacon interval and the listen_interval parameter of ESP32-C3. In
Modem-sleep mode, ESP32-C3 remains connected to the Wi-Fi router, which allows it to
receive interactive information from a smartphone or server through the router.

DTIM can usually indicate the frequency of data transmission when using a router. Typically,
the DTIM beacon interval of a router ranges from 100 to 1000 ms.

ESP32-C3 uses the Bluetooth LE Connection Event to maintain a connection with the peer
device. In Modem-sleep mode, ESP32-C3 will power off the RF module between the two
Connection Events to save power, and automatically wakes up before the next Connection
Event arrives, and the duration of sleep is determined by the Bluetooth LE connection pa-

340 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

rameters.

Modem-sleep mode is typically used in low-power applications where the CPU is required to
work constantly and a Wi-Fi or Bluetooth LE connection must be maintained. For example,
when using the ESP32-C3 in local voice wakeup applications, the CPU constantly collects
and processes audio data.

1. Wi-Fi Modem-sleep mode

In development, users can use esp_wifi_set_ps() function to set current Wi-Fi power
save type:

• WIFI_PS_NONE: not using Modem-sleep mode.

• WIFI_PS_MIN_MODEM: ESP32-C3 wakes up to receive beacon every router DTIM beacon,
i.e. 1 router interval.

• WIFI_PS_MAX_MODEM: ESP32-C3 wakes up periodically to receive beacon. The interval
can be configured via the listen_interval parameter in wifi_sta_config_t (unit:
in units of the interval time of the router DTIM beacon). The default value is 3, which
indicates an interval of 3 router beacons. The code is as follows:

1. typedef enum {

2. WIFI_PS_NONE, /*< No power save*/

3. WIFI_PS_MIN_MODEM, /*< Minimum modem power saving. In this mode,

4. station wakes up to receive beacon every DTIM period*/

5. WIFI_PS_MAX_MODEM, /*< Maximum modem power saving. In this mode,

6. interval to receive beacons is determined by the

7. listen_interval parameter in wifi_sta_config_t*/

8. } wifi_ps_type_t;

9.

10. esp_err_t esp_wifi_set_ps(wifi_ps_type_t type);

If type is configured as WIFI_PS_MAX_MODEM, configure the interval listen_interval
that ESP32-C3 wakes up to receive beacon as follows:
1. #define LISTEN_INTERVAL 3

2. wifi_config_t wifi_config = {

3. .sta = {

4. .ssid = "SSID",

5. .password = "Password",

6. .listen_interval = LISTEN_INTERVAL,

7. },

8. };

9. ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));

10. ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));

11. ESP_ERROR_CHECK(esp_wifi_start());

12.

13. ESP_ERROR_CHECK(esp_wifi_set_ps(WIFI_PS_MAX_MODEM));

Chapter 12. Power Management and Low-Power Optimisation 341

2.Bluetooth LE Modem-sleep mode

To enable the Modem-sleep mode for Bluetooth LE, run idf.py menuconfig command to
start the Espressif IoT Development Framework Configuration tool (hereinafter referred to
as the configuration tool), then go to Component config → Bluetooth → Bluetooth

controller (ESP32C3 Bluetooth Low Energy) → MODEM SLEEP Options and
enable Bluetooth modem sleep; Use the default configuration for Bluetooth Modem

sleep Mode 1 and Bluetooth low power clock. The Modem-sleep mode of ESP32-
C3 Bluetooth LE is shown in Figure 12.1.

Figure 12.1. Modem-sleep mode of ESP32-C3 Bluetooth LE

12.2.2 Light-sleep Mode

Light-sleep mode functions in a similar manner to Modem-sleep mode, with the exception
that in Light-sleep mode, the ESP32-C3 will power down the RF module and digital periph-
erals, while most of the RAM will be limited by clock gating. Additionally, the CPU will
be paused, resulting in lower power consumption compared to Modem-sleep mode. After
waking up from Light-sleep mode, ESP32-C3’s peripherals and CPU will resume operation,
and their internal state will be preserved. The wakeup latency in Light-sleep mode is less
than 1 ms. There are two ways to put ESP32-C3 into Light-sleep mode:

Entering Light-sleep mode manually
This is achieved by calling APIs. To enter Light-sleep mode manually, it is necessary to
configure Wi-Fi as a wakeup source to allow the device to receive interactive information
from either a smartphone or a server through the router.

Entering Light-sleep mode automatically
After being configured to automatically enter Light-sleep mode, ESP32-C3 will automati-

342 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

cally enter Light-sleep mode when the CPU and RF module are idle and can be automati-
cally woken up to receive interactive information from the smartphone or server through
the router.

1. Wakeup sources in Light-sleep mode

Manually entering Light-sleep mode requires configuring a wakeup source, which can be set
to timers, GPIOs, UART, Wi-Fi, or Bluetooth LE for ESP32-C3. ESP32-C3 supports configur-
ing one or more wakeup sources at the same time, in which case ESP32-C3 will be woken up
when either wakeup source is triggered. Users can use esp_sleep_enable_*_wakeup()
function to configure wakeup sources, or use esp_sleep_disable_wakeup_source()
function to disable a wakeup source. Before entering Light-sleep mode, users can configure
the wake source at any time. After waking up, users can determine which wakeup source
was responsible for waking up the chip by calling esp_sleep_get_wakeup_cause()

function. Available wakeup sources in Light-sleep include:

GPIO wakeup
Any GPIO can be used as the external input to wake up the chip from Light-sleep mode.
Each pin can be individually configured to trigger wakeup on high or low level using
the gpio_wakeup_enable() function. GPIO wakeup can be used for any type of GPIO
(RTC IO or digital IO). Then the esp_sleep_enable_gpio_wakeup() function should
be called to enable this wakeup source.

Timer wakeup
The RTC controller has a built-in timer which can be used to wake up the chip after a
predefined amount of time. Time is specified at microsecond precision, but the actual
resolution depends on the clock source selected for the RTC SLOW_CLK. RTC peripher-
als or RTC memories don’t need to be powered on during sleep in this wakeup mode.
esp_sleep_enable_ timer_wakeup() function can be used to enable sleep wakeup
using a timer.

UART wakeup
When ESP32-C3 receives UART input from external devices, it is often necessary to wake
up the chip when input data is available. The UART peripheral contains a feature which al-
lows waking up the chip from Light-sleep mode when a certain number of rising edges on
RX pin are seen. This number of rising edges can be set using uart_set_wakeup_thre
shold(). Note that the character which triggers wakeup (and any characters before it)
will not be received by the UART after wakeup. This means that the external device typi-
cally needs to send an extra character to the ESP32-C3 to trigger wakeup before sending
the data. esp_sleep_enable_uart_wakeup() function can be used to enable this
wakeup source.

Chapter 12. Power Management and Low-Power Optimisation 343

Wi-Fi wakeup
When maintaining a Wi-Fi connection is required, the Wi-Fi can be configured as a wake
source to wake up ESP32-C3. The ESP32-C3 wakes up before each DTIM beacon of the AP
arrives and turns on its RF module, thus maintaining a Wi-Fi connection. esp_sleep_en
able_wifi_wakeup() function can be used to enable this wakeup source.

2. Entering Light-sleep mode manually

To manually enter the Light-sleep mode, users can call corresponding APIs to send ESP32-C3
into Light-sleep mode when needed. After entering Light-sleep mode, ESP32-C3 will turn
off the RF module and pause its CPU. After waking up from Light-sleep mode, ESP32-C3
will continue to execute the original program at the location where the Light-sleep API was
called. After manually entering the Light-sleep mode, ESP32-C3 can maintain the connec-
tion to the router by enabling Wi-Fi as the wake source and receive interactive information
from the smartphone or server through the router. However, if Wi-Fi is not enabled as a
wake source, ESP32-C3 may not receive packets in the network or disconnect the Wi-Fi
connection. The situation of enabling/disabling Bluetooth LE as a wake source is similar.

NOTE

• After calling the interface that manually send the chip into Light-sleep mode, ESP32-C3
will not immediately enter the Light-sleep mode, but will wait until the system is idle first.
• With the Wi-Fi wakeup source enabled, only by entering the Light-sleep mode manually
can ESP32-C3 maintain the connection with the router and receive the data sent in the
network.

3. Instructions on how to enter Light-sleep mode manually

After configuring the wakeup source, users can manually send the chip into Light-sleep mode
by calling esp_light_sleep_start() function. The code is as follows:
1. #define BUTTON_WAKEUP_LEVEL_DEFAULT 0

2. #define BUTTON_GPIO_NUM_DEFAULT 9

3.

4. /*Configure the button GPIO as input, enable wakeup*/

5. const int button_gpio_num = BUTTON_GPIO_NUM_DEFAULT;

6. const int wakeup_level = BUTTON_WAKEUP_LEVEL_DEFAULT;

7. gpio_config_t config = {

8. .pin_bit_mask = BIT64(button_gpio_num),

9. .mode = GPIO_MODE_INPUT

10. };

11. ESP_ERROR_CHECK(gpio_config(&config));

12. gpio_wakeup_enable(button_gpio_num, wakeup_level == 0 ?

13. GPIO_INTR_LOW_LEVEL : GPIO_INTR_HIGH_LEVEL);

14.

15. /*Wake up in 2 seconds, or when button is pressed*/

344 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

16. esp_sleep_enable_timer_wakeup(2000000);

17. esp_sleep_enable_gpio_wakeup();

18.

19. /*Enter sleep mode*/

20. esp_light_sleep_start();

21. /*Execution continues here after wakeup*/

When no wakeup source is enabled, ESP32-C3 can still enter Light-sleep mode. However, in
this case, ESP32-C3 will remain in Light-sleep mode until an external chip reset.

4. Entering Light-sleep mode automatically

ESP32-C3 can be configured to automatically enter Light-sleep mode when it is idle and
does not need the RF module to work, and automatically woken up when it needs to work
(such as maintaining Wi-Fi and Bluetooth LE connections or receiving data). In this case,
users don’t need to send the chip into Light-sleep mode manually, nor configure the wakeup
source separately. After being configured to automatically enter Light-sleep mode, ESP32-
C3 can maintain the connection to the router and receive interactive information from the
smartphone or server through the router, thus improving user experience. The Bluetooth
LE connection is similar to connecting to a router. Typically, automatic Light-sleep mode is
used in conjunction with Modem-sleep mode and power management. When its RF module
is not required, ESP32-C3 first enters Modem-sleep mode. If it is idle at this time, ESP32-C3
will enter Light-sleep mode to further reduce power consumption. The Modem-sleep mode
of ESP32-C3 is shown in Figure 12.2.

Figure 12.2. Modem-sleep mode of ESP32-C3

Automatic Light-sleep mode can be useful in scenarios that require ESP32-C3 to maintain a
connection with the router and respond to data sent by the router in real time, but can be
idle when no data needs to be received. For example, in the application of a Wi-Fi smart
switch, the CPU remains idle most of the time until it receives a control command. Only
upon receiving this command, the CPU activates and controls the switch to turn on or off.

5. Instructions on how to enter Light-sleep mode automatically

To configure enable the automatic Light-sleep mode, users can call esp_pm_configure()

Chapter 12. Power Management and Low-Power Optimisation 345

function and set parameter light_sleep_enable to true. When this feature is enabled,
note that CONFIG_FREERTOS_USE_TICKLESS_IDLE and CONFIG_PM_ENABLE options
must also be configured.

To configure CONFIG_PM_ENABLE option, users can run idf.py menuconfig command
to start the configuration tool, go to Component config → Power Management, then
enable Support for power management. The configuration of the ESP32-C3 power
management function is shown in Figure 12.3.

Figure 12.3. ESP32-C3 power management configuration

Users can enable the Dynamic Frequency Modulation (DFS) feature and configure the chip
to automatically enter Light-sleep mode by calling esp_pm_configure() function. When
using ESP32-C3, the corresponding parameter of this function is esp_pm_config_esp32
c3_t, which is a structure that defines the relevant DFS settings and controls if the chip can
automatically enter Light-sleep mode. In the above structure, the following three member
variables (fields) need to be initialised:

• max_freq_mhz: Maximum CPU frequency in MHz, i.e., the frequency used when ESP_

PM_CPU_FREQ_MAX lock is acquired. This field is usually set to CONFIG_ESP32C3_
DEFAULT_CPU_FREQ_MHZ.

• min_freq_mhz: Minimum CPU frequency in MHz, i.e., the frequency used when only
the ESP_PM_APB_FREQ_MAX lock is acquired. This field can be set to the XTAL frequency
value, or the XTAL frequency divided by an integer. Note that 10 MHz is the lowest
frequency at which the default REF_TICK clock of 1 MHz can be generated.

• light_sleep_enable: Whether ESP32-C3 should automatically enter Light-sleep mode
when no locks are acquired (true/false).

346 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Automatic Light-sleep mode is based on FreeRTOS Tickless Idle functionality. If Automatic
Light-sleep mode is requested while the option CONFIG_FREERTOS_USE_TICKLESS_IDLE
is not enabled in menuconfig, esp_pm_configure() will return the error ESP_ERR_
NOT_SUPPORTED. Configuration of ESP32-C3’s FreeRTOS Tickless Idle feature is shown in
Figure 12.4.

Figure 12.4. Configuration of ESP32-C3’s FreeRTOS Tickless Idle feature

1. #if CONFIG_PM_ENABLE

2. Configure dynamic frequency scaling:

3. automatic light sleep is enabled if tickless idle support is enabled.

4. esp_pm_config_ESP32-C3_t pm_config = {

5. .max_freq_mhz = 160, //Maximum CPU frequency

6. .min_freq_mhz = 10, //Minimum CPU frequency

7. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE

8. .light_sleep_enable = true

9. #endif

10. };

11. ESP_ERROR_CHECK(esp_pm_configure(&pm_config));

12. #endif //CONFIG_PM_ENABLE

12.2.3 Deep-sleep mode

Compared to Light-sleep mode, ESP32-C3 cannot automatically enter Deep-sleep mode.
Instead, users must call esp_deep_sleep_start() function to send the chip into Deep-
sleep mode. In Deep-sleep mode, ESP32-C3 does not maintain Wi-Fi and Bluetooth LE
connections, and shuts down the CPU, most of the RAM and all digital peripherals clocked
by the APB CLK. However, RTC clock controllers, RTC peripherals, and RTC fast memory can
still work. After waking up from Deep-sleep mode, ESP32-C3’s CPU will reset and restart.

Chapter 12. Power Management and Low-Power Optimisation 347

Deep-sleep can be used for low-power sensor applications, or application scenarios where
data transmission is not required for most of the time. ESP32-C3 can wake up from Deep-
sleep mode every once in a while to measure and upload data, after which it returns to
Deep-sleep mode. Alternatively, the chip can also store data from multiple measurements in
RTC Memory (RTC Memory can still save data in Deep-sleep mode) and send the data out
at once.

1. Wakeup sources in Deep-sleep mode

For Deep-sleep mode, ESP32-C3 can use GPIO or timer as wakeup sources and supports
up to two wakeup sources at the same time. In this case, ESP32-C3 will be woken up
when either of the wakeup sources is triggered. Before entering Deep-sleep mode, users
can either configure the wake source at any time using the corresponding API or disable
a wake source using esp_sleep_ disable_wakeup_source() function. After waking
up, users can determine which wakeup source was responsible for waking up the chip by
calling esp_sleep_get_wakeup_cause() function.

GPIO wakeup
Any GPIO can be used as the external input to wake up the chip from Deep-sleep mode.
Each pin can be individually configured to trigger wakeup on high or low level using
esp_deep_sleep_enable_gpio_wakeup() function. It is important to note that
GPIO wakeup is only available for RTC IO.

Timer wakeup
The RTC controller has a built-in timer which can be used to wake up the chip after
a predefined amount of time. Time is specified at microsecond precision, but the actual
resolution depends on the clock source selected for RTC_SLOW_CLK. When Timer wakeup
is enabled, RTC peripherals or RTC memory do not need to be turned on during ESP32-C3
sleep, and Timer wakeup can be enabled by calling esp_sleep_enable_timer_wake
up().

2. Instructions on how to enter Deep-sleep mode

After configuring the wakeup source, users can call esp_deep_sleep_start() to enter
Deep-sleep mode. When no wakeup source is enabled, ESP32-C3 can still enter Deep-sleep
mode. However, in this case, ESP32-C3 will remain in Deep-sleep mode until an external
chip reset.

The following code shows how to configure ESP32-C3’s Deep-sleep mode.

• Wakeup source: GPIO and timer;

• GPIO4 pin is configured to wake up on high level;

• The predefined amount of time to wake up the chip using a timer is 20 seconds.

348 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Considering that the GPIO4 pin wakes up ESP32-C3 at a high level, it is necessary to add a
pull-down resistor in your hardware circuits or software configuration to avoid false wakeup.
1. #define DEFAULT_WAKEUP_PIN 4

2. #define DEFAULT_WAKEUP_LEVEL ESP_GPIO_WAKEUP_GPIO_HIGH

3.

4. const gpio_config_t config = {

5. .pin_bit_mask = BIT(DEFAULT_WAKEUP_PIN),

6. .mode = GPIO_MODE_INPUT,

7. };

8. ESP_ERROR_CHECK(gpio_config(&config));

9. ESP_ERROR_CHECK(esp_deep_sleep_enable_gpio_wakeup(BIT(DEFAULT_WAKEUP_PIN),

10. DEFAULT_WAKEUP_LEVEL));

11. ESP_LOGI("TAG", "Enabling GPIO wakeup on pins GPIO%d\n",

12. DEFAULT_WAKEUP_PIN);

13.

14. const int wakeup_time_sec = 20;

15. ESP_LOGI("TAG", "Enabling timer wakeup, %ds\n", wakeup_time_sec);

16. esp_sleep_enable_timer_wakeup(wakeup_time_sec * 1000000);

17.

18. /*Enter deep sleep*/

19. esp_deep_sleep_start();

12.2.4 Current Consumption in Different Power Modes

The current consumption measurements are taken with a 3.3V supply at 25°C of ambient
temperature at the RF port. All transmitters’ measurements are based on a 100% duty cycle.

The current consumption depending on RF Modes is shown in Table 12.3.

Table 12.3. Current consumption depending on RF modes

Work mode Peak (mA)

IEEE 802.11b, 1 Mbit/s, @21dBm 335

IEEE 802.11g, 54 Mbit/s, @19 dBm 285

IEEE 802.11n, HT20, MCS7, @18.5 dBm 276

IEEE 802.11n, HT40, MCS7, @18.5 dBm 278

IEEE 802.11b/g/n, HT20 84

IEEE 802.11n, HT20 87

Description

Active (RF working)

TX

RX

Current consumption in other modes is shown in Table 12.4.

Chapter 12. Power Management and Low-Power Optimisation 349

Table 12.4. Current consumption in other modes

Work mode
Typical
value

Unit

160 MHz 20 mA

80 MHz 15 mA

Light-sleep 130 µA

Deep-sleep 5 µA

Power off 1 µA

Description

Modem-sleep1,2 CPU working3

—

RTC timer + RTC memory

CHIP EN set to low level;
chip being powered off

Table notes:

1 When measuring the power consumption of Modem-sloop mode, the CPU is running
and the Cache is idle.

2 In the scenario when Wi-Fi is enabled, the chip switches between Active mode and
Modem-sleep mode, and the current consumption will also change between the two
modes.

3 In Modem-sleep mode, the CPU frequency changes automatically, and the frequency
depends on the CPU load and the peripherals used.

12.3 Power Management and Low-Power Debugging
Please note that the actual power consumption may exceed theoretical values due to various
factors, such as but not limited to:

• Wi-Fi is receiving data or Bluetooth LE is receiving data.

• The application acquires the power management lock for a long time and does not
release it.

• Process blocking (that is not related to calling operating system APIs) exists in the
application.

• The predefined interval to wake up the chip via a timer is too small or interrupts
happen too often.

It’s advised to identify the root cause and seek optimisation if the power consumption ex-
ceeds theoretical values for a substantial amount of time. Users can identify the root cause
via log debugging and GPIO debugging, or additionally use some network protocol analysers

350 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

if the high-power consumption may relate to Wi-Fi and Bluetooth LE. Note that this process
can iterate as many times as needed till the actual product requirements are met.

The following sections describe the most commonly used methods to optimise power con-
sumption, namely log debugging and GPIO debugging, and demonstrate how to put these
methods into practice through real-world examples and real-time power consumption data.

12.3.1 Log Debugging

When using the log debugging feature, users need to configure CONFIG_PM_PROFILING

in menuconfig to track the retention time of each power management lock, then call
esp_pm_dump_locks (FILE* stream) function to print such log. Log debugging al-
lows users to analyse which power management locks are preventing the chip from entering
a low-power mode and check how much time the chip spends in each power mode. After
debugging, users must disable CONFIG_PM_PROFILING in menuconfig.

To configure CONFIG_PM_PROFILING, users need to run idf.py menuconfig command
to start the configuration tool, go to Component config→ Power Management, and en-
able Enable profiling counters for PM locks. The screenshot of how to enable
the log debugging for ESP32-C3 is shown in Figure 12.5.

Figure 12.5. Configuration of ESP32-C3’s low-power log debugging

When ESP32-C3 is configured to automatically enter Light-sleep mode, users must call
esp_pm_dump_locks (FILE* stream) function periodically to print debugging log and
analyse the root cause of increased power consumption. Some log debugging information is
provided below:

Chapter 12. Power Management and Low-Power Optimisation 351

Time: 11879660

Lock stats:

name type arg cnt times time percentage

wifi APB_FREQ_MAX 0 0 107 1826662 16%

bt APB_FREQ_MAX 0 1 126 5367607 46%

rtos0 CPU_FREQ_MAX 0 1 8185 809685 7%

Mode stats:

name HZ time percentage

SLEEP 40M 4252037 35%

APB_MIN 40M 0 0%

APB_MAX 80M 6303881 53%

CPU_MAX 160M 823595 6%

The esp_pm_dump_locks (FILE* stream) function prints two types of debugging in-
formation, namely the Lock stats and Mode stats. The Lock stats section lists the
real-time status of all power management locks used by the application with the follow-
ing information: Name (name), type of power management lock (type), parameter (arg),
number of times the power management lock is currently acquired (cnt), total number of
times the power management lock is acquired (times), total amount of time the power
management lock is acquired (time), and the proportion of time when the power manage-
ment lock is acquired (percentage). The Mode stats section lists the real-time status of
the application’s different modes with the following information: Mode name (name), clock
frequency (HZ), total amount of time in the mode (time), and percentage of the amount of
time in the mode (percentage).

By checking the example log above, users can easily find out that, for the Wi-Fi power
management lock APB_FREQ_MAX,

• this lock is currently not acquired,
• the total amount time when this lock was acquired is 1826662 µs,
• the total number of this lock being acquired is 107 times,
• and the proportion of time when this lock was acquired is 16%.

Similarly, users can also know the rtos0 power management lock CPU_FREQ_MAX:

• is currently being acquired,
• the total amount time when this lock was acquired is 809685 µs,
• the total number of this lock being acquired is 8185 times,
• and the proportion of time when this lock was acquired is 7%.

Also, users can read log information about the Mode stats in a similar way. For example, in
Sleep mode the clock frequency is 40 MHz, and the total time in this mode is 4252037 µs,
accounting for 35% of the whole time. Similarly, users can read the log for other locks and
states themselves.

352 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

12.3.2 GPIO Debugging

When using GPIO debugging, users need to go to menuconfig, and enable CONFIG_PM_
TRACE. If enabled, some GPIOs will be used to signal events such as RTOS ticks, frequency
switching, entry/exit from idle state. For a list of GPIOs, see pm_trace.c file. This feature
is intended to be used when analysing/debugging behavior of power management imple-
mentation and should be kept disabled after the debugging.

The relevant GPIOs are shown below, with two GPIOs for each event, corresponding to CPU0
and CPU1. Since ESP32-C3 is a single-core chip, only the first column of GPIOs is effective
when debugging. During development, users can also modify the GPIO used by modifying
the source code. Before debugging, connect the selected GPIO to an instrument such as a
logic analyser or oscilloscope.
1. /*GPIOs to use for tracing of esp_pm events.

2. * Two entries in the array for each type, one for each CPU.

3. * Feel free to change when debugging.

4. */

5. static const int DRAM_ATTR s_trace_io[] = {

6. #ifndef CONFIG_IDF_TARGET_ESP32C3

7. BIT(4), BIT(5), //ESP_PM_TRACE_IDLE

8. BIT(16), BIT(17), //ESP_PM_TRACE_TICK

9. BIT(18), BIT(18), //ESP_PM_TRACE_FREQ_SWITCH

10. BIT(19), BIT(19), //ESP_PM_TRACE_CCOMPARE_UPDATE

11. BIT(25), BIT(26), //ESP_PM_TRACE_ISR_HOOK

12. BIT(27), BIT(27), //ESP_PM_TRACE_SLEEP

13. #else

14. BIT(2), BIT(3), //ESP_PM_TRACE_IDLE

15. BIT(4), BIT(5), //ESP_PM_TRACE_TICK

16. BIT(6), BIT(6), //ESP_PM_TRACE_FREQ_SWITCH

17. BIT(7), BIT(7), //ESP_PM_TRACE_CCOMPARE_UPDATE

18. BIT(8), BIT(9), //ESP_PM_TRACE_ISR_HOOK

19. BIT(18), BIT(18), //ESP_PM_TRACE_SLEEP

20. #endif

21. };

To enable CONFIG_PM_PROFILING, users need to run the idf.py menuconfig com-
mand to start the configuration tool, go to Component config → Power Management,
and enable Enable debug tracing of PM using GPIOs. The screenshot of how to
Enable debug tracing of PM using GPIOs for ESP32-C3 is shown in Figure 12.6.

The debugging can begin after completing the above-mentioned configuration. By ob-
serving different GPIO states, users get to know the current state of the CPU and the
corresponding power mode, and further understand which power modes consume more
power and can be optimised. Figure 12.7 shows the waveform of ESP32-C3’s GPIO de-
bugging for reduced power consumption. The upper section shows the real-time power

Chapter 12. Power Management and Low-Power Optimisation 353

Figure 12.6. ESP32-C3 low-power GPIO debug configuration

consumption of ESP32-C3, and the lower section shows the GPIO waveform corresponding
to ESP_PM_TRACE_SLEEP event.

Figure 12.7. ESP32-C3 low-power GPIO debug waveform

12.4 Practice: Power Management in Smart Light Project
After understanding ESP32-C3’s power management feature and different low-power modes,
users can implement different power management schemes to reduce power consumption
during the development of their actual IoT projects. This section introduces how to optimise
the power consumption of the Smart Light project, which is also used as an example in other
sections of this book, by implementing ESP32-C3’s power management scheme and using
different low-power modes.

354 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

To save energy in general or obtain certification for energy consumption, it is necessary to
reduce the power consumption of ESP32-C3 during operation as much as possible in the
Smart Light project. As explained in Sections 12.1 and 12.2, when ESP32-C3 is operating in
Deep-sleep mode, its LEDC function does not work properly, and its Wi-Fi and BLE connec-
tions cannot be maintained. As a result, ESP32-C3 can not receive control commands from
the user. Therefore, a power management scheme that utilises Wi-Fi Modem-sleep mode,
Bluetooth Low Energy Modem-sleep mode, power management, and automatic Light-sleep
mode is commonly employed to minimise power consumption in smart light projects. After
implementing this scheme:

• When the light is on, the power management lock is acquireed to ensure that the LEDC
works normally, while Wi-Fi and Bluetooth LE remain connected to receive the user’s
control commands. By using the Modem-sleep mode of Wi-Fi and the Modem-sleep
mode of Bluetooth LE, the working time of the RF circuit can be reduced to reduce
power consumption.

• When the light is off, the power management lock is released so CPU can enter Light-
sleep mode when it is idle to further reduce power consumption.

Implementing this scheme in the Smart Light project involves two steps:

(1) Configure ESP32-C3’s power management feature, enable Automatic Light-sleep mode,
turn on Wi-Fi Modem-sleep mode and Bluetooth LE Modem-sleep mode.

(2) Complete the operation of the power management lock in the application so the driver
for LEDC dimming works properly.

To learn how to optimise for lower power consumption for your existing projects, please
visit book-esp32c3-iot-projects/device firmware/6 project optimize.

12.4.1 Configuring Power Management Feature

(1) Enabling the power management feature and Automatic Light-sleep mode.

When enabling the power management feature, users first need to enable the corresponding
options in menuconfig, then call esp_pm_configure() function (Please select esp_pm_
config_esp32c3_t when you are developing with ESP32-C3). For instructions on how
to enable the Automatic Light-sleep mode, please check Section 12.2.2.

(2) Configuring Wi-Fi Modem-sleep & Bluetooth Modem-sleep.

• To enable Bluetooth Modem-sleep mode, just enable the option in menuconfig

shown in the screenshot below.

• To enable Wi-Fi modem-sleep mode, users need to first initialise Wi-Fi, and then call
esp_wifi_set_ps(wifi_ps_type_t type) function. The code to enable Wi-Fi

Chapter 12. Power Management and Low-Power Optimisation 355

https://github.com/espressif/book-esp32c3-iot-projects/tree/main/device_firmware/6_project_optimize

Figure 12.8. ESP32-C3’s Bluetooth LE Modem-sleep configuration

modem-sleep mode for the Smart Light project is as follows:
1. #define LISTEN_INTERVAL 3

2. wifi_config_t wifi_config = {

3. .sta = {

4. .ssid = "SSID",

5. .password = "Password",

6. .listen_interval = LISTEN_INTERVAL,

7. },

8. };

9. ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));

10. ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));

11. ESP_ERROR_CHECK(esp_wifi_start());

12.

13. ESP_ERROR_CHECK(esp_wifi_set_ps(WIFI_PS_MAX_MODEM));

12.4.2 Use Power Management Locks

From Section 12.1.1, we understand when being clocked by clock sources except REF_TICK,
ESP32-C3’s LEDC is affected by dynamic FM, and code for acquiring/releasing the power
management locks must be added in the application so the LEDC can function properly.
Therefore, a power management lock is required in the application to ensure that the APB
clock does not change while the LEDC is operating. Specifically:

• During the LEDC driver initialisation, initialise the ESP_PM_APB_FREQ_MAX power man-
agement lock.

• When the LEDC starts working (light on), acquire the power management lock.

• And when the LEDC stops working (light off), release the power management lock. The
code to enable Wi-Fi modem-sleep mode for the Smart Light project is as follows:

1. static esp_pm_lock_handle_t s_pm_apb_lock = NULL;

2.

3. if (s_pm_apb_lock == NULL) {

4. if (esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "l_apb",

5. &s_pm_apb_lock) ! = ESP_OK) {

6. ESP_LOGE(TAG, "esp pm lock create failed");

7. }

8. }

9.

10. while (1) {

356 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

11. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_pm_apb_lock));

12. ESP_LOGI(TAG, "light turn on");

13. for (ch = 0; ch < LEDC_TEST_CH_NUM; ch++) {

14. ledc_set_duty(ledc_channel[ch].speed_mode,

15. ledc_channel[ch].channel, LEDC_TEST_DUTY);

16. ledc_update_duty(ledc_channel[ch].speed_mode,

17. ledc_channel[ch].channel);

18. }

19. vTaskDelay(pdMS_TO_TICKS(5 * 1000));

20.

21. ESP_LOGI(TAG, "light turn off");

22. for (ch = 0; ch < LEDC_TEST_CH_NUM; ch++) {

23. ledc_set_duty(ledc_channel[ch].speed_mode,

24. ledc_channel[ch].channel, 0);

25. ledc_update_duty(ledc_channel[ch].speed_mode,

26. ledc_channel[ch].channel);

27. }

28. ESP_ERROR_CHECK(esp_pm_lock_release(s_pm_apb_lock));

29. vTaskDelay(pdMS_TO_TICKS(5 * 1000));

30. }

12.4.3 Verifying Power Consumption

Figure 12.9. Average current of ESP32-C3 module

After completing all the above-mentioned configuration to reduce power consumption, it’s
time to test the actual power consumption and check if it meets the power consumption
requirements. According to the certification requirements, the actual DUT can be the whole
light product or just the ESP32-C3 module. When the ESP32-C3 module is selected as the
DUT, a power analyser can be added between the DC power supply and the chip to measure
the power consumption data. The power analyser used in this book is Joulescope: Precision

Chapter 12. Power Management and Low-Power Optimisation 357

DC Energy Analyser. Among the certification requirements related to power consumption, it
is often necessary for smart lighting devices to measure the average current when the lights
are off and Wi-Fi is connected.

After implementing the power management scheme introduced above, the average current
of the ESP32-C3 module is 2.24 mA (see Figure 12.9). Note that the actual test result may
be different because Figure 12.9 only shows the power consumption of ESP32-C3 module
for a short period of time.

12.5 Summary
In this chapter, we first introduced ESP32-C3’s power management feature and supported
low-power modes (Modem-sleep, Light-sleep, Deep-sleep modes), then described how to
perform low-power debugging, and, at last, concluded how to use the power management
feature and low-power modes to reduce power consumption and how to measure actual
power consumption, using a smart light project as an example.

358 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Chapter
13

Enhanced Device Security
Features

The security of data is a complex and ever-evolving research topic. This chapter aims to
provide readers with a foundational understanding of data security. In Section 13.1, we will
discuss the threats that can compromise the security of IoT device data and introduce the
basic framework for data protection. Section 13.2 presents a scheme for verifying the in-
tegrity of IoT device firmware data. Section 13.3 introduces two encryption schemes - Flash
Encryption and NVS Encryption - that ensure data confidentiality. Section 13.4 outlines the
Secure Boot scheme, which safeguards the legitimacy of IoT device firmware data. Finally,
Section 13.5 examines the effectiveness of combining the Flash Encryption and Secure Boot
schemes and provides guidance on how to enable these schemes in device mass production.

13.1 Overview of IoT Device Data Security
The previous chapters introduced how to ensure the security of data during data transmis-
sion, that is to use HTTPS protocol. Although the data is secured during transmission, it can
still face varying threats on the device side.

We want security for the data on our devices, but what exactly does “security” mean? As
we will explore in this chapter, security is a multifaceted concept that encompasses many
different aspects. At a minimum, data security should include the following key components:

Confidentiality
Only authorised developers can access the real content of the data. In a smart lighting
system, data such as the Wi-Fi password, user login information, and device ID need to
be protected from unauthorised access or disclosure.

Integrity
Data can be maliciously tampered with during transmission and storage stages, and code
errors may occur accidentally. Therefore, device must have the capability to verify the
completeness of the data to ensure its integrity. In a smart lighting system, data such
as new firmware and stored network certificates obtained during over-the-air (OTA) up-
grades must be verified for completeness before loading and usage. This verification is
necessary to prevent loading and using data that has been tampered with or contains
errors.

359

Legitimacy
It is important that devices receiving data have the ability to authenticate the sender
and accept data only from legitimate sources. In the context of a smart lighting system,
control commands and firmware updates should only originate from authorised devices.
Just imagine, if anyone can control the lights in your bedroom using their smartphones,
will you sleep well?

So, what types of data must be protected on the device?

Firmware data
Firmware is an executable binary file running on the device, which is responsible for
coordinating system resources and enabling data exchange between the device and the
external system. Firmware security is just as critical as operating system security on a
PC. If the security of firmware is compromised, the device’s normal functions may be
seriously impacted. Therefore, it is imperative to ensure firmware data security. In the
case of ESP32-C3 based smart lighting devices, firmware usually includes bootloader and
app firmware stored in the flash memory.

Key data to be used by the device
Such as the key to connect to the cloud, and the key to log in to the device, etc.

13.1.1 Why Securing IoT Device Data?

IoT device data may be exposed to varying security threats during transmission and storage
stages. Figure 13.1 shows data exchange between the device and the cloud, where the cloud
sends data to the device, and the device receives and stores the data in its flash memory.
To ensure data security and compliance with confidentiality, integrity, and legitimacy, en-
crypted HTTPS protocol is commonly used for data transmission. However, there is still a
possibility that malicious actors could compromise data security by potentially engaging in
the following actions:

• Compromising data confidentiality, such as using esptool.py to read the data in
the flash and steal the device ID and Wi-Fi password.

• Compromising data integrity, such as erasing user login data from the device’s flash,
tampering with network certificates, or implanting programs that collect user infor-
mation. This kind of attack which embeds malicious code into a source code is called
code injection attack.

• Compromising data legitimacy, such as forging the cloud server and sending illegal
data to the device, or eavesdropping on a secure network communication, and then
resending the login information to the device to log in and control device. The attack
that undermines the data legitimacy by “replaying” stolen data is called a replay attack.

360 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 13.1 shows the security risks that the device may face when exchanging data with
the cloud.

Figure 13.1. Security risks when exchanging data with cloud

As we can see, device data security cannot be guaranteed unless proper measures are taken.
In real-world applications, threats to IoT devices are much more complex than those dis-
cussed above. As IoT devices often communicate with other devices and some may operate
in unattended environments, it becomes easier for malicious actors to obtain, analyse, or
tamper with the device’s data. Therefore, ensuring data security has become a more urgent
requirement.

13.1.2 Basic Requirements for IoT Device Data Security

Protecting the data security of IoT devices needs to be discussed from two aspects: data
storage and data transmission. They respectively propose requirements for the protection of
data integrity, confidentiality, and legality. The basic components of data security are shown
in Figure 13.2.

Figure 13.2. Basic components of data security

The requirements for data transmission security mainly include the following three aspects:

• Integrity: Data should not be tampered with or contain errors during transmission.
• Confidentiality: The data being transmitted is encrypted, and attackers cannot access

the real content of the data.
• Legitimacy: The communicating peer device is a trusted target device.

Chapter 13. Enhanced Device Security Features 361

The requirements for data storage security also include three aspects:

• Integrity: Data should not be tampered with or damaged during storage.
• Confidentiality: After the stored data is read, attackers cannot decipher the real con-

tent of the data.
• Legitimacy: The data being used is authenticated.

Of course, data storage security and transmission security are not completely independent.
They complement each other and together constitute a unified framework for the security
of IoT device data. After establishing the above framework, clarifying some concepts, and
providing an understanding of the requirements for IoT device data security, this chapter
will further explain how to protect IoT device data step by step.

13.2 Data Integrity Protection

13.2.1 Introduction to Integrity Verification Method

To verify data integrity, a block of data called checksum (also known as digest, fingerprint,
hash value, or hash code) is usually used. The checksum is fixed-length check data generated
by the corresponding integrity verification algorithm. The checksum essentially represents
the uniqueness of the data block, just like a person’s fingerprint or ID number can uniquely
represent this person. The integrity check algorithm is shown in Figure 13.3.

Figure 13.3. Integrity verification algorithm

The integrity verification algorithm has the following properties:

Collision resistance
Collision resistance means that within the data length specified by the algorithm, it is not
feasible (or very difficult) to find two different data segments x and y that result in the
same checksum. A collision happens when the size of data increases, some data is lost or
damaged, but the correct checksum can be calculated.

Raw data cannot be derived
In the case where the checksum is known, it is hard to figure out from the checksum what
the raw data is.

A collision occurs when different pieces of data are input into the algorithm, resulting in
the same checksum. Common integrity verification algorithms include CRC, MD5, SHA1,

362 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

and SHA256. These algorithms generate checksums of varying lengths, which affects the
likelihood of a collision. For example, the CRC32 checksum has a length of 32 bytes and can
theoretically guarantee that data within 512 MB will not collide. However, the probability
of data collision increases beyond this range.

A common way to perform data integrity verification is to append a checksum to the data
to be verified. Figure 13.4 illustrates the basic principle of integrity verification, where a
checksum is appended to the end of the data block. Upon receiving the data block, or
prior to using the data, the receiver recalculates the checksum. If the calculated checksum
matches the appended checksum, the data is deemed to be integral, otherwise the data is
deemed to have been tampered with or to contain code errors.

Figure 13.4. Basic principle of data integrity verification

13.2.2 Integrity Verification of Firmware Data

This section takes the integrity verification of firmware data during OTA upgrades as an
example to introduce how data integrity verification is designed. Figure 13.5 shows that
during firmware updates, integrity verification is performed before data transmission and
updated firmware loading.

Figure 13.5. Integrity verification before data transmission and firmware loading

In the process of OTA upgrades, if HTTPS protocol is used to transmit data, the sender
generates a CRC checksum for the data before transmission, and the receiver recalculates a
CRC checksum from the received data, followed by verification similar to the process shown
in Figure 13.4. It is worth noting that when using the HTTPS protocol to transmit data, there

Chapter 13. Enhanced Device Security Features 363

is no need to worry about CRC verification, as the HTTPS protocol automatically performs
this verification internally.

In addition, when the device uses the firmware stored in flash, it also checks the integrity
of the firmware. Every time the device is restarted to load the app firmware, it will perform
integrity verification to ensure that the app firmware for loading is not damaged. This
process occurs automatically and does not need manual intervention.

However, it is far from enough to rely only on integrity verification for ensuring data secu-
rity. Since the mechanisms and implementations of the integrity verification algorithms are
usually open-source, malicious attackers can use the same CRC verification algorithm to add
a CRC checksum to a custom firmware and flash it into the device’s flash, thereby passing
the CRC check. To prevent such attacks, it is necessary to identify the source of the data,
which involves the data legitimacy protection scheme - Secure Boot, which will be covered
in detail in Section 13.4.2.

13.2.3 Example

The Linux system integrates various tools for calculating checksums, such as sha256sum
and md5sum. We can use these tools to calculate the checksum of specified files, and com-
pare the changes of the checksums before and after modifying the file. Below commands
use md5sum to calculate the checksums of the hello.c file before and after modification:
$ md5sum hello.c
87cb921a75d4211a57ba747275e8bbe6 //Original MD5 checksum of hello.c

$ md5sum hello.c
79c3416910f9ea0d65a72cb720368416 //New MD5 checksum after adding one line

It can be seen that modifying just one line of code in the original file will result in greatly
different MD5 checksums.

13.3 Data Confidentiality Protection

13.3.1 Introduction to Data Encryption

The purpose of data encryption is to prevent unauthorised entities from knowing the true
meaning of the data, while enabling authorised users to interpret the data correctly. Now,
suppose you wish to encrypt the data stored in the flash memory to prevent unauthorised
access. First, you need to understand the key concepts as shown in Figure 13.6. The original
data stored in flash is referred to as plaintext, while the encrypted data generated by the
encryption algorithm is known as ciphertext. This ciphertext is incomprehensible to unau-
thorised entities. The encryption algorithm utilises a key, which is a string of numbers or
characters. In the example presented in Figure 13.6, the encryption algorithm adds 1 to
(the ASCII code of) each character in the original string and replaces all the characters. The

364 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

key used by the encryption algorithm is an integer number 1. The decryption process is the
reverse of the encryption process, where each character is changed by subtracting 1, thereby
recovering the plaintext.

All data encryption algorithms are based on the principle of replacing one set of data with
another. Figure 13.6 uses the simplest single-code replacement encryption algorithm. In
real applications, encryption algorithms are much more complex, but the principle is the
same.

Figure 13.6. Basic principle of data encryption

Data encryption algorithms can generally be divided into two categories: symmetric encryp-
tion algorithms and asymmetric encryption algorithms.

Symmetric encryption algorithms
As the name implies, symmetric encryption algorithms use the same key in both encryp-
tion and decryption process. Commonly used symmetric encryption algorithms include
DES, 3DES, and AES. The encryption process shown in Figure 13.6 is the basic process of
symmetric encryption. The key used for encryption and decryption is the same, that is,
the integer number 1.

Asymmetric encryption algorithms
The asymmetric encryption algorithms use two different keys: public key and private key,
which are a pair of strings with a specific association. The content encrypted by the public
key can only be decrypted by the paired private key. Similarly, the content encrypted by
the private key can only be decrypted by the paired public key.

A prerequisite for symmetric encryption is that the encryptor and the decryptor must agree
on a shared key, that is, they must know the content of the key beforehand. However, in
some cases, the encryptor and decryptor have never met, nor exchanged data through any
means other than the network. In such cases without pre-agreed keys, how can the encryptor
and decryptor perform encryption or decryption? The answer is asymmetric encryption
algorithm.

Chapter 13. Enhanced Device Security Features 365

Figure 13.7 shows the basic process of using asymmetric encryption and symmetric encryp-
tion together to transmit encrypted data, where asymmetric encryption is used to exchange
the key used for encryption, and after getting the symmetric key, the client and server use
the less resource-intensive symmetric encryption algorithm to protect the confidentiality of
transmitted data.

Figure 13.7. Combining asymmetric and symmetric encryption to transmit data

The commonly-used asymmetric encryption algorithm is RSA algorithm.

Technical details about encryption algorithms will not be provided in this book. After gaining
a foundational understanding of data encryption, we can proceed to a new journey.

13.3.2 Introduction to Flash Encryption Scheme

Flash encryption is used to enhance the protection of data confidentiality so as to ensure
data security. Once this feature is enabled, physical readout of flash will not be sufficient
to recover flash contents. As explained above, data confidentiality needs to be protected
during both transmission and storage stages. Flash encryption can be used to encrypt data
stored in flash, while other encryption scheme is needed for data transmission, for example
HTTPS transmission protocol.

1. Relevant storage areas

Both eFuse and flash are storage media relevant to the flash encryption scheme, but have
different properties and usages, as shown in Table 13.1.

The types of data that are stored in the flash and encrypted by flash encryption include
firmware bootloader, app firmware, partition table, and any partition marked with the
encrypted flag in the partition table.

Taking the following partition table as an illustration, enabling flash encryption will result
in the encryption of specific partitions, namely the bootloader partition, factory partition,

366 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Table 13.1. Contents and properties of eFuse and flash

Storage
medium

Contents Properties

Flash
Bootloader.bin, app.bin,
nvs data, and partition tables

Flash memory can be erased and repro-
grammed repeatedly.

eFuse

System parameters such as chip
version and MAC, and keys and
control bits relevant to system
functions

Once an eFuse bit is programmed to 1,
it can never be reverted to 0. In particu-
lar, for some eFuse blocks, if they are set
to be read-protected, the data in these
blocks can only be read by hardware
cryptography modules.

storage partition, and nvs key partition. Notably, partitions used to store firmware, such as
the bootloader partition and factory partition, are encrypted by default, so there is no need
to add encrypted flag to them.
1. # Name, Type, SubType, Offset, Size, Flags
2. nvs, data, nvs, , 0x6000,
3. # Extra partition to demonstrate reading/writing of encrypted flash
4. storage, data, 0xff, , 0x1000, encrypted
5. factory, app, factory, , 1M,
6. # nvs_key partition contains the key that encrypts the NVS partition named nvs.
7. The nvs_key partition needs to be encrypted.
8. nvs_key, data, nvs_keys, , 0x1000, encrypted,

Flash encryption is used to encrypt data stored in flash. Some eFuses are used during flash
encryption. The list of utilised eFuses and their descriptions are given in Table 13.2.

Table 13.2. eFuses used in flash encryption

eFuses Description
Length
(bit)

BLOCK KEYN
Used to store flash encryption/decryption key.
N ranges from 0 to 4.

256

DIS_DOWNLOAD_

MANUAL_ENCRYPT

If set, disables flash encryption download function
in download boot mode.

1

SPI_BOOT_CRYPT_CNT

Enables encryption and decryption.
Feature is enabled if one or three bits are set in the
eFuse, disabled otherwise.

3

Chapter 13. Enhanced Device Security Features 367

The tool espefuse.py can be used to check the current eFuse status on ESP32-C3. For
example, run the following command to check the current eFuse value:

$ espefuse.py --port PORT summary //replace "PORT" with your port name

If FLASH_CRYPT_CNT is 0, as shown in the log below, it means flash encryption is not
enabled.
espefuse.py v2.6-beta1

Connecting........_____.

EFUSE_NAME Description = [Meaningful Value] [Readable/Writeable] (Hex

Value)

--

Security fuses:

FLASH_CRYPT_CNT Flash encryption mode counter = 0 R/W (0x0)

FLASH_CRYPT_CONFIG Flash encryption config (key tweak bits) = 0 R/W (0x0)

CONSOLE_DEBUG_DISABLE Disable ROM BASIC interpreter fallback = 1 R/W (0x1)

Identity fuses:

MAC MAC Address

= 30:ae:a4:c3:86:94 (CRC 99 OK) R/W

...

2. Flash encryption algorithm

The symmetric encryption algorithm used by flash encryption is AES-XTS, which is a tweak-
able block cipher. During encryption, the algorithm encrypts plaintext data in blocks, and
dynamically adjusts the key according to the offset address of the plaintext data. The basic
principle of AES-XTS-128 block encryption is shown in Figure 13.8, where the plaintext data
of 64 Bytes are divided into four blocks, and the encryption keys (key1 ⇠ key4) are derived
from base_key. Combining the four encrypted blocks will get the 64 B encrypted data.

Figure 13.8. Basic principle of AES-XTS-128 block encryption

368 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

The benefits of AES-XTS, which first dynamically adjusts the encryption key and then en-
crypts data, are:

• Encrypting the same data block results in different ciphertext, which makes the en-
crypted data more difficult to be analysed and cracked, thus increasing data confiden-
tiality.

• Different data blocks can be encrypted and decrypted independently. Even if one
data block is damaged, it will not affect the decryption of other data blocks. En-
cryption/decryption between data blocks is independent.

13.3.3 Flash Encryption Key Storage

The flash encryption key is stored in BLOCK_KEY. There are two methods to write the key
into eFuse:

Manual method
Use espsecure.py to manually generate a key and write it into eFuse. This method can
only be used before enabling flash encryption for the first time.

Automatic method
After flash encryption is enabled in menuconfig, the device will automatically generate
a key in the bootloader when it starts up for the first time, and automatically save the key
in eFuse.

To manually write the flash encryption key into eFuse, first run the following command to
generate the key:

$ espsecure.py generate flash encryption key my flash encryption key.bin

Then, run the following command to write the key into eFuse:

$ espefuse.py --port PORT burn key BLOCK my flash encryption key.bin XTS AES 128 KEY

NOTE

Since writing eFuse is irreversible, manual writing of the key into eFuse can only be
performed once.

Flash encryption can be enabled through menuconfig → Security features →
Enable flash encryption on boot. If flash encryption is enabled in building stage
and the key has not been manually written into eFuse in advance, then after the firmware
is flashed, the device will enable flash encryption, automatically generate a key, and write it
into eFuse.

The main difference between the manual method and automatic method is that with the
manual method, you can know the content of the key and use a script tool to encrypt the

Chapter 13. Enhanced Device Security Features 369

data before flashing it into the device. With the automatic method, if the read protection
of BLOCK_KEY is enabled in the eFuse (which is enabled by default), the key is generated
inside the device and stored directly in the read-protected eFuse, making it impossible for
external developers to obtain the key or manually encrypt/decrypt the data.

In manual mode, use the following command to encrypt the app firmware, and flash it to
the device:
$ espsecure.py encrypt flash data --aes xts --keyfile /path/to/key.bin --address
0x10000 --output my-app-ciphertext.bin build/my-app

It is important to note that when using the aforementioned command for data encryption,
you must specify the storage address of the data in the partition table. In the command pro-
vided, the data being encrypted is my-app, with its address set to 0x10000. As emphasised
in Section 13.3.2, flash encryption relies on the tweakable block cipher AES-XTS, and there-
fore, the accurate data address must be specified. Failure to specify or incorrectly specifying
the address will result in device failure after flashing the encrypted firmware.

Furthermore, it is worth mentioning that if the encryption key is known, the script tool
espsecure.py can also be used to decrypt the data. Running the command espsecure

.py-h will provide helpful information regarding the usage of the script tool.

During the mass production of devices, it is highly recommended to utilise the automatic
method for key writing. This ensures that each device is assigned a unique key that remains
inaccessible from external sources, thus maximising the overall security of the device.

13.3.4 Working Mode of Flash Encryption

Flash encryption has two working modes:

Development mode
As the name suggests, development mode is used during the development stage where
there is a frequent need to program different plaintext flash images and test the flash
encryption process. This requires that new plaintext images can be loaded as many times
as needed. In development mode, flash encryption can be disabled and new firmware can
be flashed using commands, which will be explained in Section 13.3.7.

Release mode
Release mode is recommended for mass production. In release mode, serial port can-
not perform flash encryption operations, which can be ensured by enabling flash encryp-
tion feature. In this mode, flash encryption cannot be disabled once enabled, and new
firmware cannot be downloaded over serial port but only be downloaded using the over-
the-air (OTA) scheme.

The working mode of flash encryption can be selected through menuconfig → security

370 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

features → Enable flash encryption on boot → Enable usage mode. Fig-
ure 13.9 shows that development mode is enabled for flash encryption.

Figure 13.9. Development mode enabled for flash encryption

Note that in development mode, flash encryption can be disabled with espefuse.py

--port PORT burn_efuse SPI_BOOT_CRYPT_CNT. After disabling encryption scheme,
deselect the option in menuconfig, then run idf.py flash to flash new firmware. The
number of times to disable flash encryption is limited by the length of the SPI_BOOT_CRYPT
_CNT flag in eFuse. If the flag contains an odd number of “1”s, it means that flash encryption
is enabled; if it contains an even number of “1”s, it means that flash encryption is disabled.
If the length of the flag bit is 3 bits, it means flash encryption can only be disabled once.

NOTE

Visit https://docs.espressif.com/projects/esptool/en/latest/esp32/espsecure/index.html
for more information about espefuse.py.

Enabling flash encryption may increase the size of bootloader. Options to work around this
are:

(1) Set partition table offset through menucofig → Partition Table → Offset

of partition table. For example, changing the offset from 0x8000 to 0xa000
will increase the space by 8 KB.

Note that after changing the partition offset of the bootloader, you need to check
whether the area allocation in the partition table needs to be updated.

(2) Reduce bootloader log level through menuconfig → Bootloader log verbo-

sity. Changing log level from Info to Warning can reduce log size, thus reducing the
bootloader size.

13.3.5 Flash Encryption Process

After flashing the plaintext firmware to the device with flash encryption enabled for the first
time, and subsequently starting the device, the flash encryption feature will be automatically
enabled. The following outlines the basic workflow for the initial automatic enabling of flash
encryption:

(1) Firmware bootloader reads the SPI_BOOT_CRYPT_CNT eFuse value. If flash encryp-

Chapter 13. Enhanced Device Security Features 371

https://docs.espressif.com/projects/esptool/en/latest/esp32/espsecure/index.html

tion is not enabled, the bootloader will enable flash encryption. By default, the value
is 0, meaning flash encryption is not enabled yet.

(2) Bootloader checks if BLOCK_KEY stores the flash encryption key. If the key is not
pre-flashed (see Section 13.3.3), it will be generated automatically and written to
BLOCK_KEY. The write and read protection bits for BLOCK_KEY will be set, so that
software cannot access the key.

(3) Flash encryption block encrypts the flash contents - the firmware bootloader, applica-
tions and partitions marked as encrypted.

(4) Firmware bootloader sets the first available bit in SPI_BOOT_CRYPT_CNT to 1 to
mark the flash contents as encrypted.

(5) In Development mode, SPI_BOOT_CRYPT_CNT and DIS_DOWNLOAD_MANUAL_ENC

RYPT are not write-protected. The firmware bootloader allows to disable flash encryp-
tion and re-flash encrypted binaries.

(6) In Release mode, SPI_BOOT_CRYPT_CNT and DIS_DOWNLOAD_MANUAL_ENCRYPT

are write-protected. Flash encryption is enabled permanently and re-flashing firmware
is forbidden.

(7) The device is rebooted to start executing the encrypted bootloader and app firmware.

NOTE

By default, when flash encryption is enabled, some flag bits of eFuse will be set, thus
disabling some system functions, such as JTAG. Keeping these system functions may bring
security risks. During test phase, if you need to keep these flags, please refer to the
instructions related to flash encryption in the ESP-IDF Programming Guide.

With flash encryption enabled, when the device loads and runs encrypted bootloader and
app firmware, it first automatically decrypts the data through the hardware module, and
then loads the decrypted data into its iRAM and cache. Furthermore, certain APIs are de-
signed to seamlessly handle the encryption and decryption of data when performing read
and write operations within encrypted partitions in the flash memory. The APIs responsible
for automatic decryption of data include esp_partition_read(), esp_flash_read_
encrypted(), and bootloader_flash_read(); the APIs responsible for automatic en-
cryption of data include esp_partition_write(), esp_flash_write_encrypted(),
and bootloader_flash_write().

Particularly, with flash encryption enabled, during OTA upgrades, the device receives plain-
text data, and then calls esp_partition_write() to automatically encrypt the data be-
fore writing it into the flash memory.

372 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

NOTE

For mass-produced devices, OTA upgrade function can be used to update app firmware
remotely, but not the bootloader. Therefore, it is crucial to carefully configure the boot-
loader settings, including parameters like the log level, before enabling flash encryption.

13.3.6 Introduction to NVS Encryption

The flash encryption scheme does not directly protect the data stored in the NVS partition.
To protect the confidentiality of the data stored in NVS partition, NVS encryption scheme
should be used. NVS encryption can be enabled through menuconfig → Component

config → NVS → Enable NVS encryption or by calling nvs_flash_secure_
init().

The basic principle of the NVS encryption scheme is to define a partition in the partition
table with a size of no less than 4 KB and the subtype of nvs_key. After enabling the
NVS encryption scheme, the NVS partition will be encrypted using the key in the nvs_key
partition. A typical partition table that supports NVS encryption is shown below:
1. # Name, Type, SubType, Offset, Size, Flags

2. nvs, data, nvs, , 0x6000,

3. phy_init, data, phy, , 0x1000,

4. factory, app, factory, , 1M,

5. nvs_key, data, nvs_keys, , 0x1000, encrypted,

NVS encryption scheme is similar to the flash encryption scheme in many ways, such as:

• The encryption algorithm used by the NVS encryption scheme is the symmetric encryption
algorithm AES-XTS. As mentioned earlier, symmetric encryption algorithm requires its key
to be kept secret to ensure that the encrypted data cannot be analysed and cracked. The
key of the NVS encryption scheme cannot be plaintext, so this scheme is often used to-
gether with the flash encryption scheme, where flash encryption is responsible for protect-
ing the confidentiality of the nvs_key, while NVS encryption uses nvs_key to protect
the confidentiality of the NVS partition.

• There are two methods for storing the NVS encryption key: one is the manual method,
that is, manually generate a key and write the key to the designated partition; the other is
the automatic method, that is, when the NVS encryption scheme is first enabled and the
nvs_key partition is empty, the device automatically calls the nvs_flash_generate_
keys() function to generate the key, and then writes the key to the nvs_key partition,
and subsequently uses the key to complete NVS encryption/decryption.

The steps to manually store the NVS encryption key are as follows:

First, generate a file containing the key by running the following command:

$ espsecure.py generate flash encryption key my nvs encryption key.bin

Chapter 13. Enhanced Device Security Features 373

Then, compile and burn the partition table with the following command:

$ idf.py -p (PORT) partition table-flash

Finally, burn the key to the specified partition with the following command:

$ parttool.py -p (PORT) --partition-table-offset "nvs key partition offset"
write partition --partition-name="name of nvs key partition" --input "nvs key
partition"

• After enabling NVS encryption, APIs starting with nvs_get or nvs_set automatically
perform data encryption/decryption when reading/writing data in the NVS partition.

Please note that when flash encryption is enabled, it is highly recommended to also enable
NVS encryption (which is enabled by default). This is important because the Wi-Fi driver
stores sensitive data, such as SSID and password, in the default NVS partition. The NVS
encryption scheme allows for the use of different keys (nvs_key) in different NVS parti-
tions. When initialising a specific NVS partition, you only need to specify the corresponding
nvs_key.

NOTE

Visit https://bookc3.espressif.com/nvs for further information about NVS encryption.

13.3.7 Examples of Flash Encryption and NVS Encryption

In the esp-idf/examples/security/flash encryption directory, we’ve uploaded
an example of flash encryption and NVS encryption. By running this example, you can
observe the logs that demonstrate the results of flash encryption and NVS encryption.

As mentioned earlier, when flash encryption is enabled in development mode, the firmware
can be flashed repeatedly. To flash the firmware into the device, we have used the following
three commands:

Command 1:

$ idf.py -p PORT flash monitor

Command 2:

$ idf.py -p PORT encrypted-flash monitor

Command 3:

$ idf.py -p PORT encrypted-app-flash monitor

The results of running the above three commands are:

• Command 1: the data stored in flash remains plaintext, resulting in a loading error;
• Command 2: only the encrypted bootloader, app firmware, and partition table are

flashed, and can be loaded and run on the device without any issues;

374 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://bookc3.espressif.com/nvs
https://github.com/espressif/esp-idf/tree/master/examples/security/flash_encryption

• Command 3: only the encrypted app firmware is flashed; if the bootloader is also en-
crypted, the firmware can be loaded and run on the device.

The above three commands actually call esptool.py internally. The corresponding set-
tings of esptool.py are:

$ esptool.py --chip esp32c3 -p /dev/ttyUSB0 -b 460800 --before=default reset
--after= no reset write flash --flash mode dio --flash freq 40m --flash size
2MB 0x1000 bootloader/bootloader 0x20000 flash encryption.bin 0xa000
partition table/partition-table.bin

$ esptool.py --chip esp32c3 -p /dev/ttyUSB0 -b 460800 --before=default reset
--after= no reset write flash --flash mode dio --flash freq 40m --flash size
2MB --encrypt 0x1000 bootloader/bootloader 0x20000 flash encryption.bin 0xa000
partition table/partition-table.bin

$ esptool.py --chip esp32c3 -p /dev/ttyUSB0 -b 460800 --before=default reset
--after= no reset write flash --flash mode dio --flash freq 40m --flash size 2MB
--encrypt 0x20000 flash encryption.bin

By examining the settings of the commands, we can conclude that when using esptool.py
for flashing, adding the option --encrypt will enable automatic flash encryption and write
the encrypted data into flash.

Below are several typical failure cases when enabling flash encryption:

• If the bootloader is plaintext, the following failure may occur when starting the device:

rst:0x3 (SW_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)

invalid header: 0xb414f76b

invalid header: 0xb414f76b

invalid header: 0xb414f76b

invalid header: 0xb414f76b

invalid header: 0xb414f76b

invalid header: 0xb414f76b

invalid header: 0xb414f76b

• If the partition is plaintext, the following failure may occur when starting the device:

rst:0x3 (SW_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)

configsip: 0, SPIWP:0xee

clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00

mode:DIO, clock div:2

load:0x3fff0018,len:4

load:0x3fff001c,len:10464

ho 0 tail 12 room 4

load:0x40078000,len:19168

load:0x40080400,len:6664

entry 0x40080764

I (60) boot: ESP-IDF v4.0-dev-763-g2c55fae6c-dirty 2nd stage bootloader

Chapter 13. Enhanced Device Security Features 375

I (60) boot: compile time 19:15:54

I (62) boot: Enabling RNG early entropy source...

I (67) boot: SPI Speed : 40MHz

I (72) boot: SPI Mode : DIO

I (76) boot: SPI Flash Size : 4MB

E (80) flash_parts: partition 0 invalid magic number 0x94f6

E (86) boot: Failed to verify partition table

E (91) boot: load partition table error!

• If the app firmware is plaintext, the following failure may occur when starting the device:

rst:0x3 (SW_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)

configsip: 0, SPIWP:0xee

clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00

mode:DIO, clock div:2

load:0x3fff0018,len:4

load:0x3fff001c,len:8452

load:0x40078000,len:13616

load:0x40080400,len:6664

entry 0x40080764

I (56) boot: ESP-IDF v4.0-dev-850-gc4447462d-dirty 2nd stage bootloader

I (56) boot: compile time 15:37:14

I (58) boot: Enabling RNG early entropy source...

I (64) boot: SPI Speed : 40MHz

I (68) boot: SPI Mode : DIO

I (72) boot: SPI Flash Size : 4MB

I (76) boot: Partition Table:

I (79) boot: ## Label Usage Type ST Offset Length

I (87) boot: 0 nvs Wi-Fi data 01 02 0000a000 00006000

I (94) boot: 1 phy_init RF data 01 01 00010000 00001000

I (102) boot: 2 factory factory app 00 00 00020000 00100000

I (109) boot: End of partition table

E (113) esp_image: image at 0x20000 has invalid magic byte

W (120) esp_image: image at 0x20000 has invalid SPI mode 108

W (126) esp_image: image at 0x20000 has invalid SPI size 11

E (132) boot: Factory app partition is not bootable

E (138) boot: No bootable app partitions in the partition table

13.4 Data Legitimacy Protection

13.4.1 Introduction to Digital Signature

You may have signed your name on an application for admission, legal documents, or credit
card receipts, indicating that you agree with the content of these documents. In the field of
data security, the device needs to identify the sender or the producer of the data to indicate
that the data is not forged, has been authorised, is legitimate, and can be used safely. Digital

376 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

signature is a technical solution for verifying data legitimacy.

Digital signature has two properties: unforgeability, that is, only legitimate data senders
can sign data, and other signatures are invalid; verifiability, that is, data users must be able
to verify the validity of the signature.

Common digital signature algorithms include RSA and DSA. The basic process of digital
signature verification is:

(1) The data sender generates a private key, which is used to generate a public key, thus
getting a private-public key pair. Note that only the private key can generate a match-
ing public key.

(2) The data sender saves the public key to the storage system of the data user.

(3) The data sender signs the data with the private key and sends the signed data and
signature to the data user.

(4) After receiving the data, the data user uses the public key stored in step (2) to verify
the signature sent in step (3). If the signature is correct, the data is considered to be
from a legitimate data sender; otherwise, the data is considered unauthorised and will
not be used.

The basic principle of using digital signature to verify data legitimacy is shown in Figure
13.10.

Figure 13.10. Basic principle of using digital signatures to verify data legitimacy

Through this mechanism of “private key issuing public key, private key signing, and public
key verifying signature”, the legitimacy of the data source can be authenticated. However,
you may have noticed that there are prerequisites for this scheme to be effective:

• The private key of the data sender should not be leaked. Once the private key is made
public, an attacker can use the public private key to sign illegal data and send it to the
data user, then this verification mechanism will fail.

• The public key of the data user cannot be removed at will. If an attacker generates a

Chapter 13. Enhanced Device Security Features 377

private-public key pair on his own system and replaces the public key of the data user
with his own public key, the attacker can sign illegal data with his own private key and
then send the illegal data to the data user. The data user may use the replaced public
key to verify the data sent by the attacker, and thus consider the data to be legitimate.

In the following sections, we will see how the Secure Boot scheme is designed to address
these issues. Let’s continue our journey to the next section!

13.4.2 Overview of Secure Boot Scheme

The secure boot scheme is used to protect the legitimacy of firmware data (including boot-
loader and app firmware). It uses the RSA digital signature algorithm to verify the signature
attached to the firmware data before loading and running the new firmware data, thereby
verifying whether the firmware data is legitimate. When the secure boot scheme is enabled,
the device only loads and runs firmware that is authorised by a specified private key.

Before delving into the implementation principles of secure boot, let’s briefly review the boot
process of ESP32-C3 as depicted in Figure 13.11.

Figure 13.11. ESP32-C3 boot process

When the device is powered on, the booting process starts from ROM Boot, followed by
transitioning to the Bootloader, and ultimately reaches the app firmware. ROM Boot is
a fixed, executable program in the on-chip ROM that remains unalterable. Consequently,
the bootloader and app firmware are the key components requiring protection. Modifying
the firmware can be achieved through two methods: physical flashing, where the new
bootloader and app firmware are written to the device’s flash memory using a flashing tool,
or OTA upgrades, which solely update the app firmware while excluding the bootloader.

So, here comes the question – how can we ensure the integrity and legitimacy of the
firmware data, regardless of the method used to transmit it to the device? To address this
query, we will explore two operational modes of secure boot in Section 13.4.3 and Section
13.4.4: software secure boot and hardware secure boot.

NOTE

There are two versions of the secure boot scheme, v1 and v2. As ESP32-C3 only supports
secure boot v2, the contents in this section are applicable to secure boot v2.

13.4.3 Introduction to Software Secure Boot

Software secure boot does not need hardware support (mainly eFuse) for verification.

378 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Before enabling software secure boot, an RSA signature private key needs to be generated
using the following command:

$ espsecure.py generate signing key --version 2 secure boot signing key.pem

The generated private key is stored in the file secure_boot_signing_key.pem.

Enabling software secure boot is as simple as selecting Require signed app images in
menuconfig, (as shown in Figure 13.12), followed by building and flashing the firmware.

Figure 13.12. Enabling software secure boot for ESP32-C3

When software secure boot is enabled, during firmware building, the generated app firmware
(referred to as origin app below) contains a public key, which will be used to verify the
legitimacy of the new firmware new_app sent via OTA upgrade. As shown in Figure
13.13, during OTA upgrades, after receiving the firmware and calling esp_ota_end()

or esp_ota_set_boot_partition(), software secure boot will automatically use the
public key in origin_app to verify the digital signature attached to new_app.

Figure 13.13. Software secure boot verifies new app firmware sent via OTA upgrades

When software secure boot is enabled, the app firmware sent to the device through OTA
upgrade must be signed with a private key. There are two ways to achieve this:

(1) As shown in Figure 13.12, configure the option Sign binaries during build,
and specify the directory of the private key file, then the app firmware can be auto-
matically signed when compiling.

(2) Run the following command to sign the app firmware:

$ espsecure.py sign data --version 2 --keyfile PRIVATE SIGNING KEY BINARY FILE

The above command directly modifies the current file and adds verification information to
it. Use the --output option to name the file after the signature is added. Using a command
to sign firmware allows the signed private key to be stored on a remote server, rather than

Chapter 13. Enhanced Device Security Features 379

on the build machine, therefore, it is more convenient for batch signing on mass-produced
devices.

Enabling software secure boot involves appending a signature block to the app firmware.
This signature block encompasses the necessary data for signature verification. In the case
of ESP32-C3, when utilising software secure boot, only the initial signature block holds
validity. Conversely, when opting for hardware secure boot, up to three signature blocks are
permitted, each capable of being signed with a distinct private key. Verification is considered
successful as long as at least one of the signatures is valid. The data format of the signed
app firmware of ESP32-C3 is shown in Figure 13.14.

Figure 13.14. Data format of signed app firmware of ESP32-C3

In the software secure boot scheme, the public key used to verify the signature is compiled
within the currently running app firmware and is automatically managed by the device.
Users are not required to manage it manually. To obtain the content of the public key, use
the following command to manually export the public key derived from the private key:

$ espsecure.py extract public key --version 2 --keyfile secure boot signing key.
pem pub key.pem

In this command, secure_boot_signing_key.pem is the private key, and pub_key.pem
is the public key derived from the private key.

From the implementation principles of software secure boot, we can conclude that the
scheme verifies the new_app sent via OTA upgrade using the origin_app. However,
attackers have the potential to flash unauthorised bootloader and origin_app onto the
device through physical flashing, which cannot be managed by the software secure boot. As
a result, software secure boot is more suitable for scenarios where the device is not suscep-
tible to physical attacks. In the subsequent sections, we will delve into how the hardware
secure boot scheme addresses physical attacks.

13.4.4 Introduction to Hardware Secure Boot

Hardware secure boot involves verification that is done via hardware.

It uses the data stored in eFuse to verify the legitimacy of firmware data. Relevant eFuses
are shown in Table 13.3.

380 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Table 13.3. eFuses used in verifying legitimacy of firmware data

eFuses Description Length (bit)

SECURE_BOOT_EN If set, hardware secure boot is enabled permanently. 1

KEY PURPOSE X
X is a natural number. For example, KEY_PURPOSE_1
is used to set the purpose of BLOCK_KEY1.

4

BLOCK_KEYX

If the corresponding KEY PURPOSE X is set to
SECURE_BOOT_DIGEST1, then BLOCK_KEYX will
have the SHA256 digest of the public key.

256

Hardware secure boot supports not only all the functions of software secure boot described
in Section 13.4.3, but also additional verifications on the bootloader and origin_app

firmware. Hardware secure boot scheme uses the same method of generating private-public
key pair, and the same method of signing app firmware, as presented in Section 13.4.3.

When hardware secure boot is enabled, in addition to the app firmware, the bootloader also
requires signing, using the same method and format as app firmware. In the event that
the bootloader needs to be rebuilt and resigned, it is necessary to execute the command
idf.py bootloader separately. Additionally, the command idf.py -p PORT boot

loader-flash is required to flash the signed bootloader. Running idf.py flash will
only flash the signed app firmware and partition table, excluding the bootloader.

Hardware secure boot can be enabled as follows:

(1) Open the Project Configuration Menu, navigate to menuconfig → Security fea

tures and select the Enable hardware Secure Boot option.

(2) If the firmware needs to be signed while compiling, specify the private key of the signa-
ture. As shown in Figure 13.15, specify the private key file through menuconfig →
Security features → Secure Boot private key. If the private key has not
been generated, refer to Section 13.4.3 to export the private key. In addition, refer to
Section 13.4.3 to sign the firmware using espsecure.py.

(3) Run the command idf.py bootloader to build the bootloader, and then idf.py

-p PORT bootloader-flash to flash the bootloader.

(4) Run idf.py flash monitor to flash the app firmware and partition table.

(5) After the device is powered on, it will execute the just-built bootloader, which auto-
matically sets the SECURE_BOOT_EN flag in the eFuse, enabling permanent usage of
hardware secure boot. Furthermore, the public key digest, which is attached to the sig-
nature block of the bootloader, will be written into BLOCK_KEY. Figure 13.15 shows

Chapter 13. Enhanced Device Security Features 381

how to enable hardware secure boot during the compilation stage.

Figure 13.15. Enabling hardware secure boot during compilation

NOTE

1. When hardware secure boot is enabled, make sure to save the signed private key file,
otherwise the updated bootloader and app firmware may not be sent to the device.

2. Enabling secure boot will increase the size of bootloader, which might require updating
partition table offset or reducing bootloader size. Refer to Section 13.3.4 for detailed
instructions.

3. If more content is added to the bootloader firmware, make sure the bootloader size
does not exceed 0x10000.

4. Hardware secure boot saves the SHA256 digest of the public key in eFuse, not the
public key itself. This is because the public key itself contains a lot of data, but the
eFuse space is limited.

Visit https://bookc3.espressif.com/bootloader for more information about bootloader.

When hardware secure boot is enabled, the device will perform the following verification on
updated bootloader and app firmware.

(1) Public key verification. Upon device startup, ROM Boot will check the eFuse. If hard-
ware secure boot is enabled, ROM checks the digest of the public key in the bootloader
and validates if it matches the digest of the public key in eFuse. If they do not match,
it means that the public key has been tampered with or damaged, and the boot is
terminated; otherwise, the public key in the bootloader is considered correct, and the
boot process continues.

(2) Bootloader signature verification. ROM Boot uses the public key to verify the boot-
loader signature. If the verification fails, the boot will be terminated; otherwise, the
process continues.

(3) origin app signature verification. The bootloader uses the public key to verify the
signature of origin_app. If the verification fails, the boot process is terminated.

(4) new app signature verification during OTA upgrades. This is done through origin
_app, in a similar manner to software secure boot.

Figure 13.16 shows the basic flow of signature verification done by hardware secure boot.

382 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://bookc3.espressif.com/bootloader

Figure 13.16. Basic flow of signature verification by hardware secure boot

NOTE

The complete signature verification process not only verifies signatures, but also verifies
other data, such as the digest of the firmware.

Hardware secure boot starts signature verification from ROM Boot, and then progresses to
the bootloader, the origin_app firmware, and finally the new_app firmware, step by step,
establishing a complete trust chain of ROM boot → bootloader → origin_app →
new_app. From the above-described process, it is not difficult to tell the differences between
software secure boot and hardware secure boot, as outlined in Table 13.4.

Table 13.4. Differences between software secure boot and hardware secure boot

Items Software Secure Boot Hardware Secure Boot

Using eFuse? No. Yes.

Scope of estab-
lished trust chain

origin_app → new_app

A complete trust chain of
ROM boot → bootloader →
origin_app → new_app

Can private key-public
key pairs be replaced?

Yes. Re-flashing app firmware
will enable a new private
key-public key pair.

No. The public key digest is fixed
in eFuse.

Can be disabled?

Yes. It can be disabled by re-
flashing app.bin that does not
have software secure boot
enabled.

No. Once hardware secure boot is
enabled, the SECURE BOOT EN
in eFuse is burnt, which means it
cannot be disabled.

The hardware secure boot scheme performs more verification during the process from ROM
Boot to origin_app execution, thus increasing the device startup time and the bootloader
size. In the application scenarios where devices need to start up quickly, or small-sized
bootloader is required, software secure boot is more suitable.

Chapter 13. Enhanced Device Security Features 383

When hardware secure boot is enabled, there will be some restrictions applied to the device,
including:

• The device can only run signed bootloader and app firmware. As a result, re-flashed
bootloader and app firmware, or updated app firmware via OTA upgrades need to be
signed with the corresponding private keys.

• In order to strengthen system security, by default, when hardware secure boot is enabled,
JTAG debugging is disabled. Moreover, read protection of eFuse is disabled, and the
unused signature slot in the eFuse is canceled. At the development stage, these functions
can be retained through menuconfig → Security features → Potentially

insecure options. At mass production stage, these functions should be disabled by
default to enhance the overall security of the device.

• When hardware secure boot is enabled, the device’s UART download function will change,
depending on the selected option of menuconfig → security features → UART

ROM download mode. There are three options of UART ROM download mode, as
shown in Table 13.5.

Table 13.5. Options of UART ROM download mode

Option Description

Enabled Retains flash read/write through serial port

Switch to Secure mode

Retains only basic functions of flash read/write through
serial port. Advanced functions (such as downloading en-
crypted firmware) are forbidden.

Permanently disabled Disables flash read/write through serial port

So far, we have learnt the basic principles and common usage of hardware secure boot.
There are also advanced usages of the scheme, such as using multiple signatures or can-
celling invalid public keys.

NOTE

Visit https://bookc3.espressif.com/secure-boot-v2 for user guides on Secure Boot v2.

13.4.5 Examples

The secure boot solution features have been seamlessly integrated into ESP-IDF. By famil-
iarising yourself with the implementation principles and configuring the appropriate options
in the menuconfig, you can easily enable these features according to your requirements.
In comparison to the software secure boot solution, the hardware secure boot provides a

384 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://bookc3.espressif.com/secure-boot-v2

more comprehensive verification of firmware validity. Thus, it is recommended to utilise the
hardware secure boot solution to enhance device security during the mass production stage.
This section will present several examples of enabling hardware secure boot, which can be
utilised for testing purposes. Furthermore, if you encounter any errors while sending new
firmware to the device using hardware secure boot, the following log messages can serve as
a reference for troubleshooting.

When hardware secure boot is enabled according to the steps described in 13.4.4, starting
up the device for the first time will get the following log message:
I (10251) secure_boot_v2: Secure boot V2 is not enabled yet and eFsue digest

keys are not set

I (10256) secure_boot_v2: Verifying with RSA-PSS...

I (10254) secure_boot_v2: Signature verified successfully!

I (10272) boot: boot: Loaded app from partition at offset 0X120000

I (10274) secure_boot_v2: Enabling secure boot V2...

Re-powering up the device will get the following message:
ESP-ROM:esp32c3-api1-20210207

Build:Feb 7 2021

rst:0x1 (POWERON),boot:0xC(SPI_FAST_FLASH_BOOT)

SPIWP:0xee

mode:DIO, clock div:1

Valid Secure Boot key blocks: 0

Secure Boot verification succeeded

load:0x3fcd6268,len:0x2ebc

load:0x403ce000,len:0x928

load:0x403d0000,len:0x4ce4

entry 0x403ce000

I (71) boot: ESP-IDF v4.3.2-2741-g7c0fa3fc70 2nd stage bootloader

Flashing unsigned bootloader to the device will get the following error message and termi-
nate boot process.
ESP-ROM:esp32c3-api1-20210207

Build:Feb 7 2021

rst:0x1 (POWERON),boot:0xC(SPI_FAST_FLASH_BOOT)

SPIWP:0xee

mode:DIO, clock div:1

Valid secure boot key blocks: 0

No signature block magic byte found at signature sector (found 0xcd not 0xe7).

Image not V2 signed?

secure boot verification failed

ets_main.c 333

Flashing unsigned app firmware to the device will get the following error message and
terminate boot process.

I (310) esp_image: Verifying image signature...

Chapter 13. Enhanced Device Security Features 385

I (312) secure_boot_v2: Verifying with RSA-PSS...

No signature block magic byte found at signature sector (found 0x41 not 0xe7).

Image not V2 signed?

E (326) secure_boot_v2: Secure Boot V2 verification failed.

E (332) esp_image: Secure boot signature verification failed

I (339) esp_image: Calculating simple hash to check for corruption...

W (418) esp_image: image valid, signature bad

Sending unsigned app firmware to the device through OTA upgrade will cause signature
verification failure, thus ending the data transmission, and preventing firmware loading.
I (4487) simple_ota_example: Starting OTA example
I (5657) esp_https_ota: Starting OTA...
I (5657) esp_https_ota: Writing to partition subtype 16 at offset 0x120000
I (26557) esp_image: segment 0: paddr=00120020 vaddr=3c0a0020 size=1b488h (111752) map
I (26567) esp_image: segment 1: paddr=0013b4b0 vaddr=3fc8d800 size=02b10h (11024)
I (26567) esp_image: segment 2: paddr=0013dfc8 vaddr=40380000 size=02050h (8272)
I (26577) esp_image: segment 3: paddr=00140020 vaddr=42000020 size=9d9ech (645612) map
I (26667) esp_image: segment 4: paddr=001dda14 vaddr=40382050 size=0b60ch (46604)
I (26667) esp_image: segment 5: paddr=001e9028 vaddr=50000000 size=00010h (16)
I (26667) esp_image: Verifying image signature...
I (26677) secure_boot_v2: Take trusted digest key(s) from eFuse block(s)
E (26687) esp_image: Secure boot signature verification failed
I (26687) esp_image: Calculating simple hash to check for corruption...
W (26757) esp_image: image valid, signature bad
E (26767) simple_ota_example: Firmware upgrade failed

13.5 Practice: Security Features In Mass Production

13.5.1 Flash Encryption and Secure Boot

The flash encryption scheme is primarily used to safeguard the confidentiality of data stored
on the device’s flash, while the secure boot scheme is focused on ensuring the legitimacy of
firmware data. For optimal device security, it is recommended to utilise both schemes in con-
junction. As shown in Figure 13.17, flash encryption and secure boot can be simultaneously
enabled during the firmware building process.

Figure 13.17. Enabling flash encryption and secure boot through menuconfig

Additionally, when using flash encryption and secure boot, pay attention to the following to
enhance device security:

386 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

• Generate different flash encryption keys for different devices.

• Switch UART ROM download mode to Secure mode or disabled mode through
menuconfig → Security features.

• Secure the private key for signature in a private location so that it will not be lost or
disclosed. Sign only on a secure device. If the key for flash encryption is exported, also
save it in a private location.

13.5.2 Enabling Flash Encryption and Secure Boot with Batch Flash Tools

For Linux systems, tools such as esptool.py and espsecure.py can be used to configure
security features or flash firmware data. These tools help leverage security features with
more flexibility.

For Windows systems, the flash download tool (from https://www.espressif.com/zh-hans/
support/download/other-tools) can flash firmware in batch, with both secure boot and flash
encryption enabled simultaneously. Open the configure/esp32c3/security file in the
tool’s directory, and configure the settings of secure boot and flash encryption. The security
configuration file is shown in Figure 13.18.

Figure 13.18. Security configuration file in flash download tool

NOTE

If the security file does not show when the directory is opened for the first time, quit
the program first and re-open it, then the file will show.

The default security configurations in the security file are as follows:
1. [SECURE BOOT]

2. secure_boot_en = False //Enable secure boot?

3.

4. [FLASH ENCRYPTION]

5. flash_encryption_en = False //Enable flash encryption?

6. reserved_burn_times = 0 //Reserve flash encryption in development mode?

7. //The number of times control bit SPI_BOOT_CRYPT_CNT can be burnt

8.

9. [ENCRYPTION KEYS SAVE]

10. keys_save_enable = False //Save the key for flash encryption locally?

Chapter 13. Enhanced Device Security Features 387

https://www.espressif.com/zh-hans/support/download/other-tools
https://www.espressif.com/zh-hans/support/download/other-tools

11. encrypt_keys_enable = False //Encrypt the key saved locally?

12. encrypt_keys_aeskey_path = //Key path

13.

14. [DISABLE FUNC]

15. jtag_disable = False

16. dl_encrypt_disable = False

17. dl_decrypt_disable = False

18. dl_cache_disable = False

Please refer to the user manual of the flash download tool for more information.

NOTE

At production stage when both flash encryption and secure boot are enabled on the device,
it is important to use a standard and stable power supply, otherwise the device may be
damaged permanently.

13.5.3 Enabling Flash Encryption and Secure Boot in Smart Light Project

Different from other solutions presented in this book, flash encryption and secure boot can
be used almost “out of the box”, without the need for additional coding. These security
schemes can be conveniently enabled by configuring the menuconfig settings. For a smart
lighting system, we recommend using flash encryption, NVS encryption, and hardware se-
cure boot simultaneously to enhance the overall device security to its maximum potential.

13.6 Summary
This chapter first introduces two key aspects of IoT device security: data storage and data
transmission. These aspects have specific requirements for data integrity, confidentiality,
and legitimacy. Then, the chapter proceeds to discuss several solutions that address these
security concerns, including:

• Data integrity verification algorithm verifies the integrity of firmware data during the
firmware loading process or OTA upgrades.

• Flash encryption and NVS encryption safeguard the confidentiality of data stored in
flash memory and prevent unauthorised access to key data. Encrypted data can only be
loaded after decryption using a specific key. Enabling flash encryption ensures that even
if the data is obtained from the flash, it cannot be copied to another device for loading,
thereby protecting the intellectual property rights of software developers.

• Secure boot scheme verifies the authenticity and legitimacy of firmware data, ensuring
that only firmware from authenticated sources is allowed to run on the device.

Finally, the chapter provides a brief overview of how to enable flash encryption and secure
boot using the mass production download tools.

388 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Chapter
14

Firmware Burning and Testing
for Mass Production

After the development stage, it is time for pilot-run verification tests and mass production.
Pilot-run verification tests include:

EVT (Engineering Verification Test)
An EVT is performed on the first PCBA (Printed Circuit Board Assembly) to ensure that
basic designs meet requirements and specifications, including basic hardware functions,
RF performance, RF interference, and power consumption. The EVT process may iterate
as many times as required to identify and fix all the issues.

DVT (Design Verification Test)
A DVT is performed on the whole product to ensure that the product meets requirements
and specifications before moving towards mass production. DVT includes high/low tem-
perature test, electrostatic discharge (ESD) test, and drop test.

Product Certification
Once the product passes EVT and DVT, a prototype can be prepared for national or alliance
certifications, such as SRRC, FCC, CE, etc.

After trial production, the product is ready for mass production. Mass production involves
many stages, such as material preparation, mounting, burning, testing, packaging, etc. This
chapter only focuses on two stages that are closely related to Espressif’s products - firmware
burning and product testing.

14.1 Firmware Burning in Mass Production
Firmware for mass production mainly includes two parts: application firmware and data
partitions. This section focuses on defining the application firmware and data partitions and
how to flash them.

14.1.1 Defining Data Partitions

To identify different smart products on the market and bind them to their users, it is often
necessary to store some unique data in each smart product. For example, in order for
smart products to effectively connect to the vendor’s cloud platform, unique authentication

389

information (e.g., device certificate, ID, and password) should be generated and stored in
each smart product. It will be used on the server side when the smart product is connected
and authenticated.

During the development stage, we can easily store the authentication information in a smart
product, by defining constants and storing them in firmware, or by writing it into Flash.
But in mass production, these methods become clumsy and inefficient. Therefore, a more
convenient method is needed to burn data partitions in actual production.

In Part II Hardware and Driver Development, Section 6.4.1, we introduced the NVS library,
which can be an option to store the unique mass production data of smart products, as
well as any application-related user data. User data are often read and modified when
using a smart production, and will be erased when reset to factory, while the unique mass
production data can only be read. Therefore, mass production data and user data need
to be assigned different namespaces, for example mass prod (for production data) and
user data (for user data). This makes it possible to directly erase the user data while
keeping the mass production data unaffected during a factory reset. Besides, the mass
production data and user data can also be stored separately in different NVS partitions.

The following code shows how to store product certificate under mass prod and the SSID
of Wi-Fi under user data:
1. nvs_handle_t mass_prod_handle = NULL;

2. nvs_handle_t user_data_handle = NULL;

3. //Initialize NVS Flash Storage

4. nvs_flash_init_partition(partition_label);

5.

6. //Open non-volatile storage with mass_prod namespace

7. nvs_open("mass_prod", NVS_READONLY, &mass_prod_handle);

8.

9. //Open non-volatile storage with user_data namespace

10. nvs_open("user_data", NVS_READWRITE, &user_data_handle);

11.

12. uint8_t *product_cert = malloc(2048);

13. //read operation in mass_prod namespace

14. nvs_get_blob(mass_prod_handle, "product_cert", &product_cert);

15.

16. char ssid[36] = {0};

17. //read operation in user_data namespace

18. nvs_get_str(user_data_handle, "ssid", &ssid);

19. //write operation in user_data namespace

20. nvs_set_str(user_data_handle, "ssid", &ssid);

21.

22. //Erase user_date namespace when reset to factory

23. nvs_erase_all(user_data_handle);

390 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Now that we’ve known how to store mass production data, we need to convert them into a
required format before flashing them onto the device. The basic steps for generating mass
production data are shown in Figure 14.1.

Figure 14.1. Basic steps for generating mass production data

First, create a CSV file to store key-value pairs; write the data needed into the file. For mass
production, an NVS partition binary file should be generated from this CSV file, then be
burned to the device. For each device produced, a unique NVS partition binary file will be
burned to it. For example:
1. key, type, encoding, value

2. mass_prod, namespace,,

3. ProductID, data, string, 12345

4. DeviceSecret, data, string, 12345678901234567890123456789012

5. DeviceName, data, string, 123456789012

Second, use esp-idf/components/nvs flash/nvs partition generator/nvs

partition gen.py to generate the NVS partition binary file on the development host with
the following command:

$ python $IDF PATH/components/nvs flash/nvs partition generator/nvs partition
gen.py --input mass prod.csv --output mass prod.bin --size NVS PARTITION SIZE

NOTE

Replace the NVS PARTITION SIZE parameter with the actual size of the corresponding
NVS partition in the partition table. After executing the above command, the resulting
file mass prod.bin is the binary file for mass production. Run the following command
to burn this file to the device Flash.

$ python $IDF PATH/components/esptool py/esptool/esptool.py --port $ESPPORT
write flash NVS PARTITION ADDRESS mass prod.bin

NOTE

Replace the NVS PARTITION ADDRESS parameter with the actual address of the corre-
sponding NVS partition in the partition table.

Chapter 14. Firmware Burning and Testing for Mass Production 391

14.1.2 Firmware Burning

In mass production, the binary files that need to be burned to the device include:

• firmware for mass production devices
• binary files of mass production data

During the burning, it is necessary to ensure that a unique binary file of mass production
data is burned to each device, while the application firmware is usually the same for all
devices. To achieve this, we can write a script to generate a unique binary file of mass
production data for each device based on its MAC address. Then, this file can be burned to
the device together with the application firmware. In this process, a table that relates the
MAC address of each device to its mass production data can also be created for querying,
debugging, and tracking.

Espressif can customize firmware for our module products based on customers’ require-
ments. For example, we can conduct safety configurations to ESP32-C3 series of modules,
including the unique mass production data for each device. In this way, Espressif modules
can be mounted directly onto the product’s hardware circuit, which saves manufacturers’
trouble for secondary burning. Espressif also provides a Flash Download Tool, where a fac-
tory mode can be used to burn multiple devices at a time. For more details about the Flash
Download Tool, please check the documentation on our website.

Figure 14.2. Interface of factory mode in Flash Download Tool

The interface of factory mode in the Flash Download Tool is shown in Figure 14.2. In factory
mode, Flash Download Tool loads firmware through relative paths and by default burns the
firmware stored in bin directory to device. Users may store their firmware in the bin folder
under the tool directory so that they can copy the project to different computers without
triggering path-related errors.

392 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

14.2 Mass Production Testing
The purpose of mass production testing is to ensure that the functions and performance
of the whole product meet standards, so it is necessary to fully check the functions and
performance of each product during this stage. Depending on the product characteristics,
the schemes for mass production testing can be slightly different. For RF communication
products, it is necessary to ensure that RF performance meets standards and each component
functions as expected. This normally involves RF performance test, power consumption test,
and functional test of various peripherals.

For wireless products, common mass production testing includes electromagnetic compati-
bility (EMC) test, RF performance test, production compliance test, safety test, SAR (Specific
Absorption Rate) test, etc., among which the RF performance test is of high importance, thus
requiring a large amount of testing. It is conducted to verify whether the RF performance of
a product meets the designated requirements and relevant standards. It involves two sets of
indicators: Transmitter (TX) and Receiver (RX) characteristics.

This section mainly introduces the mass production testing schemes for products with Espres-
sif Wi-Fi / Bluetooth Low Energy (BLE) modules and chips, which can be used as a reference
for designing testing schemes for similar products. For detailed information, please refer to
Espressif Production Testing Guide on our official website. Generally, there are two pro-
duction testing schemes available for RF performance test: RF General- purpose Tester
Scheme (widely adopted in the industry) and Signal Board Scheme (designed by Espres-
sif).

RF General-purpose Tester Scheme
The tester scheme is widely used for the production testing of Wi-Fi / BLE products.
Espressif provides the necessary serial port commands and firmware, so the customers
can easily use this scheme for testing. The testing steps are demonstrated in Figure 14.3.

Figure 14.3. Diagram of the tester scheme

Chapter 14. Firmware Burning and Testing for Mass Production 393

Signal Board Scheme
The signal board scheme is specially designed by Espressif, which can effectively test
the RF performance of the mass-produced Wi-Fi / BLE products, thus guaranteeing the
RF quality. This scheme features low cost of hardware and easy environment setup for
factories.

As demonstrated in Figure 14.4, the signal board can be used as a standard device to com-
municate with the DUT (Device Under Test) and test it by analyzing the communication
data. Hardware connection for signal board scheme is demonstrated in Figure 14.5.

Figure 14.4. Diagram
of signal board scheme

Figure 14.5. Hardware connec-
tion for signal board scheme

14.3 Practice: Mass Production Data in Smart Light Project
In the Smart Light project introduced in this book, each device needs to store some unique
information for identification, as well as some common configuration for operation. The
public ESP RainMaker used in the project is for prototyping and evaluation, which only
allows adding five devices at most. You can generate binary files of mass production data
based on obtained credentials and modify relevant source codes to stimulate the operations
in mass production. To get the Cloud connectivity credentials of a larger scale, please contact
Espressif for private ESP RainMaker deployments.

14.4 Summary
In this chapter, we introduced the mass production testing of products based on Espressif’s
modules and chips, and the burning of mass production firmware, so that readers can have
a preliminary understanding of mass production. For devices to be identified and bound
to users, unique mass production data must be burned to each device. To save manufac-
turers’ trouble of burning firmware in mass production, Espressif provides modules with
customized firmware, which can be mounted directly onto the product’s hardware circuit.

394 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Chapter
15

ESP Insights:
Remote Monitoring Platform

The previous chapters introduced the ESP RainMaker IoT cloud platform, a device-to-cloud
solution provided by Espressif. Using the components of the ESP RainMaker IoT cloud
platform, users can easily connect to ESP RainMaker, realizing remote control of devices.
With the help of the ESP RainMaker IoT cloud platform, users can develop the ESP32-
C3 smart LED products with ease. But we all know that from project approval to mass
production, a product needs to go through main processes including functional evaluation,
implementation, and verification.

Based on the introduction about the functions of smart LED products and how these func-
tions are realized from the previous chapters, you may wonder after realizing the functions
of the smart LED, how to carry out systematic functional verification and on-hook verifica-
tion.

After developing the function code of a project, functional verification is required. At this
time, you can set the log level to Debug mode, and monitor the log on the serial port to get
the debugging done. This is a necessary verification before releasing the software. Upon
completing the basic functional verification, functions such as log output and command
line debugging should often be disabled. Then, it’s time to release the Release version.
Thereafter, even if the software behaves abnormally during the Quality Assurance (QA) test
or during usage, it will be difficult for developers to quickly locate and fix the issues by
obtaining device logs. Sometimes, developers may even need to disassemble the device for
the logs to analyze the cause of the abnormality. To solve this problem, Espressif Systems
has developed ESP Insights, which supports developers to check the running status and logs
of firmware remotely, so as to detect and solve firmware problems in time, speeding up the
software development process.

15.1 Introduction to ESP Insights
ESP Insights (project link: https://github.com/espressif/esp-insights) is a remote monitor-
ing platform that allows users to monitor the health of the device remotely, including warn-
ing and error logs, metrics for device operating parameters, device coredump information,
and custom data and events.

395

https://github.com/espressif/esp-insights

In this chapter, we will introduce the functions and applications of ESP Insights based on the
esp-insights project. The commit ID is afd70855eb4f456e7ef7dc233bf082ec7892
d9df.

ESP Insights includes a firmware agent, the Insights agent, that captures vital pieces of
diagnostics information from the device during runtime and uploads them to the ESP In-
sights cloud. The cloud then processes this data for visualization. Developers can log in
to a web-based dashboard to look at the health and issues reported by their devices in the
field. Currently, we only support processing diagnostics information and reports on the
ESP RainMaker IoT cloud platform. Support for other cloud platforms will be available in
later releases. Figure 15.1 presents the ESP RainMaker IoT cloud platform overview report.
Figure 15.2 presents the ESP RainMaker IoT cloud platform metrics report. Figure 15.3
presents the ESP RainMaker IoT cloud platform variables report.

Figure 15.1. Overview report by ESP RainMaker

Currently, developers can monitor the following information on the web-based dashboard:

Error logs
Outputs by the serial port when the log printing function ESP_LOGE() is called by com-
ponents or user applications.

Warning logs
Outputs by the serial port when the log printing function ESP_LOGW() is called by com-
ponents or user applications.

Custom events
Outputs by the serial port when ESP_DIAG_EVENT() is called by user applications. Cus-
tom events can be used for user-defined data.

396 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Figure 15.2. Metrics report by ESP RainMaker

Figure 15.3. Variable report by ESP RainMaker

Reset reason
Reasons why the device is reset, e.g., powered on, software reset, brownout, etc.

Coredump summary
Register contents and stack backtrace of the offending thread in case of a crash.

Metrics
Time-varying data, e.g., the free heap size, the Wi-Fi signal strength plotted over time,
etc.

Chapter 15. ESP Insights: Remote Monitoring Platform 397

Variables
Variable values, e.g., the device’s IP address, gateway address, Wi-Fi connection informa-
tion, etc.

1. Features of ESP Insights

(1) Check device properties (e.g., name, ID, firmware version, etc.) and device status (e.g.,
memory usage, maximum free block, free heap value, Wi-Fi signal strength, etc.).

(2) Check logs generated during device firmware operation, such as error and warning
logs, crash backtrace information, reboots, and other custom events.

(3) Check the current data reported by the device and generate data sheets according to
time.

(4) Support customised metrics and variables based on users’ needs.

2. Advantages of ESP Insights

(1) Accelerate the development and release of software products.

Beta tests are normally required before releasing any software products officially. Dur-
ing the beta testing, users will provide feedback regarding the performance, stability,
reliability, and other problems of the product in real usage scenarios, which will then
be handled and fixed by developers. This process often costs developers a large amount
of time and effort in locating problems and analysing the causes. With ESP Insights,
developers can check the device operation status remotely and obtain the details of ab-
normal events in a timely manner, saving the time on handling problems greatly and
accelerating the software development and release process. ESP Insights also saves
the records of abnormal events occured before the device firmware crashes. After the
device is rebooted, it uploads the data to the cloud, thus avoiding losing abnormal
information.

(2) Handle various firmware problems in a timely manner. For example:

a. Developers can use ESP Insights to check device status (such as available memory
space, maximum free block, Wi-Fi signal strength, etc.), analyse the peak value of
each metric of the device, and introduce optimisation in future firmware versions.

b. The logs of ESP Insights record the details of all abnormal events, so that develop-
ers can handle the abnormality in time before it is detected by the user, preventing
any impact of device abnormality on the actual use of the device.

(3) Data transmission: lightweight, simple, safe, and reliable.

ESP Insights is capable of transmitting diagnostics data using the HTTPS protocol and
the MQTT protocol. When working with the ESP RainMaker IoT cloud platform, Esp

398 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

Insights supports sharing the diagnostics data transmitted over an encrypted channel
via the MQTT protocol with the RainMaker IoT Cloud Platform, greatly reducing the
memory usage of the device while ensuring the information security. If you are not
using the ESP RainMaker IoT cloud platform, you can use the HTTPS protocol alone
to transfer the diagnostics data. However, compared with the ESP RainMaker IoT
cloud platform, using the HTTPS protocol alone requires adding a TLS link, which
will lead to increased memory usage. The data transmitted between the device and
the cloud platform is optimised by the CBOR encoding, which significantly saves data
transmission bandwidth. In the future, ESP Insights will also integrate device data
with the command and control data from the cloud, and pack them into the same
MQTT message, further reducing costs with fewer MQTT messages.

15.2 Getting Started with ESP Insights
Following the features and advantages of ESP Insights, in this section, we will explain how
to get started with ESP Insights based on the esp-insights project and how to check the
information reported by the device on the remote dashboard.

15.2.1 Getting Started with ESP Insights in the esp-insights Project

To get started with ESP Insights in the esp-insights project, please follow the steps
below:

1. Clone the latest esp-RainMaker

Based on the previous introduction to the ESP RainMaker IoT cloud platform, pull the
project code of esp-RainMaker, and esp-insights will be under the project directory
esp-RainMaker/components as a submodule.

$ git clone --recursive https://github.com/espressif/esp-RainMaker.git

2. Modify CMakeLists.txt of esp-RainMaker

Add esp-insight as a component to the esp-RainMaker project, ensuring that the
functions of esp-insight can be called under the esp-RainMaker project. In the current
directory of building project, modify the following command in CMakeLists.txt:

1. set(EXTRA_COMPONENT_DIRS ${RMAKER_PATH}/components ${RMAKER_PATH}/examples/

common)

to:
1. set(EXTRA_COMPONENT_DIRS ${RMAKER_PATH}/components ${RMAKER_PATH}/examples/

common ${RMAKER_PATH}/components/esp-insights/components)

3. Implement the features of ESP Insights

The code for ESP Insights is already wrapped by the examples/common/app_insights

Chapter 15. ESP Insights: Remote Monitoring Platform 399

component. Users only need to include app_insights.h in their code and call app_
insights_enable() before calling esp_rmaker_start(). However, this component
is controlled by the macro CONFIG_ESP_INSIGHTS_ENABLED, which is disabled by de-
fault. Users can enable this feature in default configuration or the image configuration
interface (use the idf.py tool to open the menu menuconfig → Component config →
ESP Insights → Enable ESP Insights).

4. Build and flash

Run the following command to build and flash:

$ idf.py build flash monitor

When the build completes, the following log will be printed as an led_light-v1.0.zip

will be generated in the build directory for future use.
======= Generating insights firmware package build/led_light-v1.0.zip =========

led_light-v1.0

led_light-v1.0/led_light.bin

led_light-v1.0/sdkconfig

led_light-v1.0/partition_table

led_light-v1.0/partition_table/partition-table.bin

led_light-v1.0/bootloader

led_light-v1.0/bootloader/bootloader.bin

led_light-v1.0/partitions.csv

led_light-v1.0/project_build_config.json

led_light-v1.0/led_light.map

led_light-v1.0/led_light.elf

led_light-v1.0/project_description.json

5. Claiming for the ESP RainMaker IoT cloud platform

As developers need the admin access for the ESP Insights cloud, claiming is thus required.
For specific claiming details, please refer to Chapter 3.

6. Log in to the Dashboard of ESP RainMaker

Once the firmware and claiming operations are all completed, the device is ready to con-
nect to ESP RainMaker. Now, users can log in to the ESP RainMaker interface (https:
//dashboard.RainMaker.espressif.com/), and click the node corresponding to the device to
enter its Dashboard.

7. Upload the generated zip file

To better understand the diagnostics information, users also need to upload the previously
generated zip file led_light-v1.0.zip to Firmware Images on the left navigation
bar of the ESP RainMaker interface, as the zip file contains binary files, elf files, mapping
files, and other useful information for analysis.

400 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

https://dashboard.RainMaker.espressif.com/
https://dashboard.RainMaker.espressif.com/

Even without changes in code, commands such as idf.py build and idf.py flash

will conduct rebuilds to generate new firmware. Thus, it is important to ensure that the
firmware running on the device corresponds to the zip file package uploaded to the ESP
RainMaker platform. Otherwise, ESP RainMaker may report errors when processing and
analysing the information reported by the device.

15.2.2 Running Example in the esp-insights Project

1. Clone ESP Insights

Clone the project code for ESP Insights using the command below:

$ git clone --recursive https://github.com/espressif/esp-insights.git

2. Configure ESP-IDF

ESP Insights currently supports the master branch and v4.3.x, v4.2.x, and v4.1.x release
branches.

To get the support for v4.3.2, you need to run the following command for a patch:

$ cd $IDF PATH
$ git apply -v <path/to/esp-insights>/idf-patches/Diagnostics-support-in-esp-
idf-tag-v4.3.2.patch

To get the support for v4.2.2 and v4.0.0, the following command is needed for a patch:

$ cd $IDF PATH
$ git apply -v <path/to/esp-insights>/idf-patches/Diagnostics-support-in-esp-
idf-tag-v4.1.1-and-tag-v4.22.patch

Users can choose the HTTPS protocol or the MQTT protocol to transmit diagnostics data
according to the needs. For specific configurations, please refer to the following command:

$ idf.py menuconfig

Navigate to Component config→ESP Insights→Insights default transports.

If the HTTPS protocol is selected to transmit diagnostics data, users need to log in to https://
dashboard.insights.espressif.com/home/insights to check the diagnostics log for the device.

3. Build and flash

Refer to step 4-7 in Section 15.2.1.

15.2.3 Reporting Coredump Information

In case of a firmware crash, the Insights agent captures the coredump information into the
flash memory and reports it to the ESP Insights cloud in the subsequent boot-up. This allows
you to look at all the crash logs that the devices may be generating in the field.

The entire stack backtrace leading up to the crash is also captured and reported. To optimise

Chapter 15. ESP Insights: Remote Monitoring Platform 401

https://dashboard.insights.espressif.com/home/insights
https://dashboard.insights.espressif.com/home/insights

the device-cloud communication, the firmware only sends a summary of the coredump. The
summary contains the most useful contents of the coredump like program counter, exception
cause, exception address, general purpose registers, and the backtrace. Figure 15.4 shows a
piece of coredump information.

Figure 15.4. Coredump information

This feature requires the following configurations, which should be added to the project’s
default configuration file sdkconfig.defaults.
1. CONFIG_ESP32_ENABLE_COREDUMP=y

2. CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH=y

3. CONFIG_ESP32_COREDUMP_DATA_FORMAT_ELF=y

4. CONFIG_ESP32_COREDUMP_CHECKSUM_CRC32=y

5. CONFIG_ESP32_CORE_DUMP_MAX_TASKS_NUM=64

To store the coredump into flash, an additional coredump partition is required. Add the
following line to the partitions.csv of the project.

1. coredump, data, coredump, , 64K

15.2.4 Customising Logs of Interest

esp_log is the default logging component in ESP-IDF. Typically, ESP_LOGE and ESP_LOGW
are used to log errors and warnings in the firmware. All logs recorded using the esp_log
component are tracked by the Insights agent and reported to the ESP Insights cloud. This al-
lows developers to view these errors through the ESP Insights Dashboard, providing detailed
information about what may be going on.

Developers can configure the log level by calling esp_diag_log_hook_enable() and
esp_diag_log_hook_disable().

402 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

1. /*enable tracking error logs*/

2. esp_diag_log_hook_enable(ESP_DIAG_LOG_TYPE_ERROR);

3.

4. /*enable tracking all log levels*/

5. esp_diag_log_hook_enable(ESP_DIAG_LOG_TYPE_ERROR|ESP_DIAG_LOG_TYPE_WARNING|

6. ESP_DIAG_LOG_TYPE_EVENT);

7.

8. /*disable tracking custom events*/

9. esp_diag_log_hook_disable(ESP_DIAG_LOG_TYPE_EVENT);

Normally, some error or warning logs are printed before the device crashes, which are hard
to be reported to the cloud. ESP Insights agent provides a way to keep the logs and report
them to the ESP Insights cloud after boot-up. ESP32-C3 is equipped with RTC memory.
The Insights agent uses this memory to store the critical errors that occurred in the system.
On any boot-up, the Insights agent will check for any unreported errors from the previous
boot-up through this RTC memory and report that to the ESP Insights cloud.

15.2.5 Reporting Reboot Reason

By default, the Insights agent supports reporting the reboot reason of the device on every
boot-up to the cloud. This allows developers to identify whether a device rebooted because
of a crash, a watchdog trigger, a software reset, or a power-reset by the end-user.

15.2.6 Reporting Custom Metrics

The Insights agent supports recording and reporting metrics to the cloud. You may then
view graphs through the Insights dashboard, which plot the changes of these metrics over a
period of time.

Set CONFIG_DIAG_ENABLE_METRICS=y to enable metrics support. The Insights agent
can record a set of pre-defined system metrics such as memory and Wi-Fi signal strength.
Additionally, you could add your own custom metrics. Figure 15.5 represents some metrics
information.

1. Heap metrics

The Insights agent supports reporting free memory, largest free block, and minimum free
memory ever. These parameters are tracked and reported for heap in the internal RAM as
well as for the heap in the external RAM (in case the device has the PSRAM). The Insights
agent also records failed memory allocations, which is available from ESP-IDF v4.2 and
onwards.

Set CONFIG_DIAG_ENABLE_HEAP_METRICS=y to enable heap metrics.

2. Wi-Fi metrics

The ESP Insights agent also supports Wi-Fi metrics. It collects Wi-Fi signal strength (RSSI),

Chapter 15. ESP Insights: Remote Monitoring Platform 403

Figure 15.5. Metrics information

and minimum RSSI information. RSSI is sampled every 30 seconds and if there is a 5 dB
difference between the previous count and the current count, it will be reported to the
ESP Insights cloud. From ESP-IDF v4.3 onwards, minimum RSSI is also recorded when the
RSSI value drops below a pre-configured threshold. The threshold can be configured by
calling esp_wifi_set_rssi_threshold(). There is also a function which can collect
and report Wi-Fi metrics at any given time:

1. /*Reports RSSI to cloud and also prints to console*/

2. esp_diag_wifi_metrics_dump();

3. Custom metrics

Developers can add custom metrics through the following functions.
1. /*Register a metrics to track room temperature*/

2. esp_diag_metrics_register("temp", "temp1", "Room temperature", "room",

3. ESP_DIAG_ DATA_TYPE_UINT);

4.

5. /*Record a data point for room temperature*/

6. uint32_t room_temp = get_room_temperature();

7. esp_diag_metrics_add_uint("temp1", &room_temp);

The prototype of the esp_diag_metrics_register() function is as follows:
1. esp_err_t esp_diag_metrics_register(const char *tag, const char *key,

2. const char *label, const char *path,

3. esp_diag_data_type_t type);

404 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

In the prototype of the function esp_diag_metrics_register(), the parameter tag
indicates the label of the metrics, which can be defined by the users. The parameter key
indicates the unique identifier of the metrics, which is used to find and set the identifier of
the metrics. The parameter label is the label displayed in the ESP Insights dashboard. The
parameter path indicates a hierarchical path to the key, which must be divided by “.”, e.g
wifi, heap.internal, and heap.external. The parameter type represents the data
type, which supports the following enumeration values:
1. typedef enum {

2. ESP_DIAG_DATA_TYPE_BOOL, /*! < Data type boolean*/

3. ESP_DIAG_DATA_TYPE_BOOL, /*! < Data type boolean*/

4. ESP_DIAG_DATA_TYPE_UINT, /*! < Data type unsigned integer*/

5. ESP_DIAG_DATA_TYPE_FLOAT, /*! < Data type float*/

6. ESP_DIAG_DATA_TYPE_STR, /*! < Data type string*/

7. ESP_DIAG_DATA_TYPE_IPv4, /*! < Data type IPv4 address*/

8. ESP_DIAG_DATA_TYPE_MAC, /*! < Data type MAC address*/

9. } esp_diag_data_type_t;

4. Variables

Variables are similar to metrics, but do not need tracing over time since they generally
represent information of devices, for example, the IP address of the device. You may set
CONFIG_DIAG_ENABLE_VARIABLES=y to enable variables support. Like metrics, a set of
pre-defined variables are supported, such as IP and Wi-Fi. Additionally, you may add your
own custom variables. The variable information is shown in Figure 15.6.

Figure 15.6. Variable information

Chapter 15. ESP Insights: Remote Monitoring Platform 405

• Network variables

As shown in Figure 15.6, ESP Insights currently supports variables in Wi-Fi and IP. For Wi-
Fi, supported variables include BSSID, SSID, Wi-Fi disconnection reason, current channel,
Wi-Fi connection authentication mode, and connection status. For IP, supported variables
include gateway address, IPv4 address, and netmask parameters.

• Custom Variables

Developers can add custom variables through the following functions:
1. /*Register a variable to track stations associated with ESP32 AP*/

2. esp_diag_variable_register("wifi", "sta_cnt", "STAs associated",

3. "wifi.sta", ESP_DIAG_DATA_TYPE_UINT);

4.

5. /*Assuming WIFI_EVENT_AP_STACONNECTED and WIFI_EVENT_AP_STADISCONNECTED

6. events track the number of associated stations*/

7. esp_diag_variable_add_uint("sta_cnt", &sta_cnt);

The prototype of the esp_diag_metrics_register() function is as follows:
1. esp_err_t esp_diag_variable_register(const char *tag, const char *key,

2. const char *label, const char *path,

3. esp_diag_data_type_t type);

The parameters of the function esp_diag_variable_register() share the same mean-
ings as those of the function esp_diag_metrics_register().

15.3 Practice: Using ESP Insights in Smart Light Project
In Section 15.2, we introduced the use of ESP Insights. In Chapter 9, we introduced how
to realise remote control of devices through the ESP RainMaker IoT cloud platform. In this
section, we will add ESP Insights to the Smart Light project based on the development in
Section 9.4 to realise diagnostics data reporting.
1. #define APP_INSIGHTS_LOG_TYPE ESP_DIAG_LOG_TYPE_ERROR

2. | ESP_DIAG_LOG_TYPE_WARNING

3. | ESP_DIAG_LOG_TYPE_EVENT

4. esp_err_t app_insights_enable(void)

5. {

6. esp_rmaker_mqtt_config_t mqtt_config = {

7. .init = NULL,

8. .connect = NULL,

9. .disconnect = NULL,

10. .publish = esp_rmaker_mqtt_publish,

11. .subscribe = esp_rmaker_mqtt_subscribe,

12. .unsubscribe = esp_rmaker_mqtt_unsubscribe,

13. };

14. esp_insights_mqtt_setup(mqtt_config);

406 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

15.

16. esp_insights_config_t config = {

17. .log_type = APP_INSIGHTS_LOG_TYPE,

18. };

19. esp_insights_enable(&config);

20. return ESP_OK;

21. }

22.

23. void app_main()

24. {

25.

26. /*Enable Schedule*/

27. esp_rmaker_schedule_enable();

28.

29. /*Use Insights*/

30. app_insights_enable();

31.

32. /*Launch the ESP RainMaker IoT cloud platform server*/

33. esp_rmaker_start();

34.

35. }

The code above presents how to use ESP Insights in the ESP-RainMaker example. The
esp_insights_mqtt_setup() function sets the interface for reporting diagnostics data.
In this case, ESP Insights shares the same MQTT channel with the ESP RainMaker IoT cloud
platform, which greatly saves the memory. APP_INSIGHTS_LOG_TYPE defines the log type
that needs to be reported. The current example supports reporting error and warning logs
and events. By default, the Insights agent supports uploading device crash logs, so users do
not need to configure this type of logs delibrately. Users can enable the following options
in the default configuration to record the memory overhead, Wi-Fi signal, and network
variables of the device.
1. CONFIG_DIAG_ENABLE_METRICS=y

2. CONFIG_DIAG_ENABLE_HEAP_METRICS=y

3. CONFIG_DIAG_ENABLE_WIFI_METRICS=y

4. CONFIG_DIAG_ENABLE_VARIABLES=y

5. CONFIG_DIAG_ENABLE_NETWORK_VARIABLES=y

In addition, users can customise and report the logs of interest following the introduction in
Section 15.2.

15.4 Summary
This chapter introduces ESP Insights, which includes a firmware agent (Insights agent) that
runs on the user’s device to capture the operating status and abnormality of the device
and report them to the ESP Insights cloud. When verifying product functions and on-hook

Chapter 15. ESP Insights: Remote Monitoring Platform 407

testing, users can log in to the dashboard of the ESP RainMaker IoT cloud platform to view
the health status of each device and whether there is an abnormality. Instead of capturing
logs of device operation on every device run, logs of device abnormality will be reported to
the ESP Insights Cloud. Users can view the reasons for device abnormality clearly through
the ESP Insights Cloud interface, making it considerably easier for debugging.

At present, the Insights agent sends data to the ESP RainMaker IoT cloud platform by de-
fault. In the future, Espressif will release solutions to support more cloud platforms to
receive and process the device information reported by the Insights agent. With these so-
lutions, the functional verification and debugging of the device will become much easier,
accelerating the release of user product firmware.

408 ESP32-C3 Wireless Adventure: A Comprehensive Guide to IoT

	I Preparation
	Introduction to IoT
	Architecture of IoT
	IoT Application in Smart Homes

	Introduction and Practice of IoT Projects
	Introduction to Typical IoT Projects
	Basic Modules for Common IoT Devices
	Basic Modules of Client Applications
	Introduction to Common IoT Cloud Platforms

	Practice: Smart Light Project
	Project Structure
	Project Functions
	Hardware Preparation
	Development Process

	Summary

	Introduction to ESP RainMaker
	What is ESP RainMaker?
	The Implementation of ESP RainMaker
	Claiming Service
	RainMaker Agent
	Cloud Backend
	RainMaker Client

	Practice: Key Points for Developing with ESP RainMaker
	Features of ESP RainMaker
	User Management
	End User Features
	Admin Features

	Summary

	Setting Up Development Environment
	ESP-IDF Overview
	ESP-IDF Versions
	ESP-IDF Git Workflow
	Choosing a Suitable Version
	Overview of ESP-IDF SDK Directory

	Setting Up ESP-IDF Development Environment
	Setting up ESP-IDF Development Environment on Linux
	Setting up ESP-IDF Development Environment on Windows
	Setting up ESP-IDF Development Environment on Mac
	Installing VS Code
	Introduction to Third-Party Development Environments

	ESP-IDF Compilation System
	Basic Concepts of Compilation System
	Project File Structure
	Default Build Rules of the Compilation System
	Introduction to the Compilation Script
	Introduction to Common Commands

	Practice: Compiling Example Program “Blink”
	Example Analysis
	Compiling the Blink Program
	Flashing the Blink Program
	Serial Port Log Analysis of the Blink Program

	Summary

	II Hardware and Driver Development
	Hardware Design of Smart Light Products based on ESP32-C3
	Features and Composition of Smart Light Products
	Hardware Design of ESP32-C3 Core System
	Power Supply
	Power-on Sequence and System Reset
	SPI Flash
	Clock Source
	RF and Antenna
	Strapping Pins
	GPIO and PWM Controller

	Practice: Building a Smart Light System with ESP32-C3
	Selecting Modules
	Configuring GPIOs of PWM Signals
	Downloading Firmware and Debugging Interface
	Guidelines for RF Design
	Guidelines for Power Supply Design

	Summary

	Driver Development
	Driver Development Process
	ESP32-C3 Peripheral Applications
	LED Driver Basics
	Color Spaces
	LED Driver
	LED Dimming
	Introduction to PWM

	LED Dimming Driver Development
	Non-Volatile Storage (NVS)
	LED PWM Controller (LEDC)
	LED PWM Programming

	Practice: Adding Drivers to Smart Light Project
	Button Driver
	LED Dimming Driver

	Summary

	III Wireless Communication and Control
	Wi-Fi Configuration and Connection
	Basics of Wi-Fi
	Introduction to Wi-Fi
	Evolution of IEEE 802.11
	Wi-Fi Concepts
	Wi-Fi Connection

	Basics of Bluetooth
	Introduction to Bluetooth
	Bluetooth Concepts
	Bluetooth Connection

	Wi-Fi Network Configuration
	Wi-Fi Network Configuration Guide
	SoftAP
	SmartConfig
	Bluetooth
	Other Methods

	Wi-Fi Programming
	Wi-Fi Components in ESP-IDF
	Exercise: Wi-Fi Connection
	Exercise: Smart Wi-Fi Connection

	Practice: Wi-Fi Configuration in Smart Light Project
	Wi-Fi Connection in Smart Light Project
	Smart Wi-Fi Configuration

	Summary

	Local Control
	Introduction to Local Control
	Application of Local Control
	Advantages of Local Control
	Discovering Controlled Devices through Smartphones
	Data Communication Between Smartphones and Devices

	Common Local Discovery Methods
	Broadcast
	Multicast
	Comparison Between Broadcast and Multicast
	Multicast Application Protocol mDNS for Local Discovery

	Common Communication Protocols for Local Data
	Transmission Control Protocol (TCP)
	HyperText Transfer Protocol (HTTP)
	User Datagram Protocol (UDP)
	Constrained Application Protocol (CoAP)
	Bluetooth Protocol
	Summary of Data Communication Protocols

	Guarantee of Data Security
	Introduction to Transport Layer Security (TLS)
	Introduction to Datagram Transport Layer Security (DTLS)

	Practice: Local Control in Smart Light Project
	Creating a Wi-Fi-based Local Control Server
	Verifying Local Control Functionality using Scripts
	Creating a Bluetooth-based Local Control Server

	Summary

	Cloud Control
	Introduction to Remote Control
	Cloud Data Communication Protocols
	MQTT Introduction
	MQTT Principles
	MQTT Message Format
	Protocol Comparison
	Setting Up MQTT Broker on Linux and Windows
	Setting Up MQTT Client Based on ESP-IDF

	Ensuring MQTT Data Security
	Meaning and Function of Certificates
	Generating Certificates Locally
	Configuring MQTT Broker
	Configuring MQTT Client

	Practice: Remote Control through ESP RainMaker
	ESP RainMaker Basics
	Node and Cloud Backend Communication Protocol
	Communication between Client and Cloud Backend
	User Roles
	Basic Services
	Smart Light Example
	RainMaker App and Third-Party Integrations

	Summary

	Smartphone App Development
	Introduction to Smartphone App Development
	Overview of Smartphone App Development
	Structure of the Android Project
	Structure of the iOS Project
	Lifecycle of an Android Activity
	Lifecycle of iOS ViewController

	Creating a New Smartphone App Project
	Preparing for Android Development
	Creating a New Android Project
	Adding Dependencies for MyRainmaker
	Permission Request in Android
	Preparing for iOS Development
	Creating a New iOS Project
	Adding Dependencies for MyRainmaker
	Permission Request in iOS

	Analysis of the App’s Functional Requirements
	Analysis of the Project’s Functional Requirements
	Analysis of User Management Requirements
	Analysis of Device Provisioning and Binding Requirements
	Analysis of Remote-Control Requirements
	Analysis of Scheduling Requirements
	Analysis of User Centre Requirements

	Development of User Management
	Introduction to RainMaker APIs
	Initiating Communication via Smartphone
	Account Registration
	Account Login

	Development of Device Provisioning
	Scanning Devices
	Connecting Devices
	Generating Secret Keys
	Getting Node ID
	Provisioning Devices

	Development of Device Control
	Binding Devices to Cloud Accounts
	Getting a List of Devices
	Getting Device Status
	Changing Device Status

	Development of Scheduling and User Centre
	Implementing Scheduling Function
	Implementing User Centre
	More Cloud APIs

	Summary

	Firmware Upgrade and Version Management
	Firmware Upgrade
	Overview of Partition Tables
	Firmware Boot Process
	Overview of the OTA Mechanism

	Firmware Version Management
	Firmware Marking
	Rollback and Anti-Rollback

	Practice: Over-the-air (OTA) Example
	Upgrade Firmware Through a Local Host
	Upgrade Firmware Through ESP RainMaker

	Summary

	IV Optimisation and Mass Production
	Power Management and Low-Power Optimisation
	ESP32-C3 Power Management
	Dynamic Frequency Scaling
	Power Management Configuration

	ESP32-C3 Low-Power Mode
	Modem-sleep mode
	Light-sleep Mode
	Deep-sleep mode
	Current Consumption in Different Power Modes

	Power Management and Low-Power Debugging
	Log Debugging
	GPIO Debugging

	Practice: Power Management in Smart Light Project
	Configuring Power Management Feature
	Use Power Management Locks
	Verifying Power Consumption

	Summary

	Enhanced Device Security Features
	Overview of IoT Device Data Security
	Why Securing IoT Device Data?
	Basic Requirements for IoT Device Data Security

	Data Integrity Protection
	Introduction to Integrity Verification Method
	Integrity Verification of Firmware Data
	Example

	Data Confidentiality Protection
	Introduction to Data Encryption
	Introduction to Flash Encryption Scheme
	Flash Encryption Key Storage
	Working Mode of Flash Encryption
	Flash Encryption Process
	Introduction to NVS Encryption
	Examples of Flash Encryption and NVS Encryption

	Data Legitimacy Protection
	Introduction to Digital Signature
	Overview of Secure Boot Scheme
	Introduction to Software Secure Boot
	Introduction to Hardware Secure Boot
	Examples

	Practice: Security Features In Mass Production
	Flash Encryption and Secure Boot
	Enabling Flash Encryption and Secure Boot with Batch Flash Tools
	Enabling Flash Encryption and Secure Boot in Smart Light Project

	Summary

	Firmware Burning and Testing for Mass Production
	Firmware Burning in Mass Production
	Defining Data Partitions
	Firmware Burning

	Mass Production Testing
	Practice: Mass Production Data in Smart Light Project
	Summary

	ESP Insights: Remote Monitoring Platform
	Introduction to ESP Insights
	Getting Started with ESP Insights
	Getting Started with ESP Insights in the esp-insights Project
	Running Example in the esp-insights Project
	Reporting Coredump Information
	Customising Logs of Interest
	Reporting Reboot Reason
	Reporting Custom Metrics

	Practice: Using ESP Insights in Smart Light Project
	Summary

