About This Guide

This document helps you to get started with the ESP32-LyraTD-SYNA development board.

Release Notes

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Release notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019.09</td>
<td>V1.0</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

Documentation Change Notification


Certification

# Table of Contents

1. Overview ........................................................................................................................................1
   1.1. ESP32-LyraTD-SYNA .............................................................................................................1
   1.2. Hardware Resources .............................................................................................................1

2. Configuring for AVS ...................................................................................................................3
   2.1. Software Preparation ............................................................................................................3
   2.2. Hardware Preparation ..........................................................................................................3
   2.3. Flashing the Firmware .........................................................................................................4
       2.3.1. Driver Installation .................................................................................................4
       2.3.2. Flashing ESP32 ......................................................................................................4
   2.4. Network Configuration .........................................................................................................7
       2.4.1. Wi-Fi Networking .................................................................................................7
   2.5. Interactive Function ...........................................................................................................10
       2.5.1. Voice Recognition ..............................................................................................10
       2.5.2. Buttons .................................................................................................................10

A. Appendix - Schematics ...............................................................................................................11
1. Overview

ESP32-LyraTD-SYNA is one of Espressif’s Audio Development Board based on ESP32 MCU and Synaptics DSP. It is an Acoustic Echo Cancelation (AEC) solution, supporting voice recognition and voice wake-up. Audio files in the format of WAV, MP3, AAC, FLAC, OPUS and OGG can be decoded and encoded without quality loss. It also supports connection to Amazon’s AVS (Alexa Voice Service), Google’s Dialogflow and Google’s GVA (Google Voice Assistant).

1.1. ESP32-LyraTD-SYNA

ESP32-LyraTD-SYNA is based on ESP32-WROVER-B, a BT/Wi-Fi combo module, and a digital signal processor (DSP) that features a two-microphone array for noise reduction and echo cancelation, as well as a Coder-Decoder (CODEC) that includes two pairs of DACs & ADCs with high sampling rates.

1.2. Hardware Resources

1. **USB Power Port**

   Provides power supply to the whole system. It is recommended that the system be connected to a power adapter for sufficient current supply.

2. **ESP32-WROVER-B module**

   This is a powerful, general-purpose, Wi-Fi+BT+BLE dual core MCU module, targeting a wide variety of applications ranging from low-power sensor networks to the most demanding tasks, such as voice encoding/decoding, music streaming and runs voice assistant client SDK.
3. CX20921 DSP
   CX20921 is a dual core, far field voice input processor which supports Smart Source
   Pickup(SSP) noise suppression and various functionalities such as voice control, voice
   search, Voice over Internet Protocol (VOIP) and acoustic echo cancellation (AEC). This
   audio DSP is used for wake-word detection. It captures audio data from two external
   microphones.

4. CX20721 codec
   CX20721 is an audio Coder-Decoder which has integrated AudioSmart Class-D with
   2.8W per channel.

5. CP2102N USB-UART Chip
   An upgraded version of the CP2102 chip supports USB-to-UART conversion.
   
   Notice:
   The IC design of this chip is a little different from CP2102.

6. USB Communication Port
   This is a normal USB communication port between PC and ESP32 module.

7. ON-Board microphone
   There are two types of microphone connection, on-board and by MIC-IN connector.

8. MIC-IN microphone connector
   Supports two external microphones.

9. FPC connector
   This connection is reserved for connecting external sub board consisting of more
   devices, such as microphone array, buttons and LEDs etc.

10. Earphone jack
    Used for plugging in earphones. Audio output is via codec.

11. Speaker output port
    Supports two external speakers output via codec.

12. Button
    The six buttons figure different functions, such as RST, BOOT, PLAY, VOL+/-, MUTE etc.
2. Configuring for AVS

2.1. Software Preparation

1. Installing Flash Download Tool
   Linux/macOS/Windows users can use the terminal to flash firmware. For more details, please check [ESP-IDF Programming Guide](https://github.com/espressif/esp-va-sdk).
   Windows users may also use a graphical tool to flash firmware onto the board using the Flash Download Tool.

2. Downloading Firmware
   Please follow the build instructions of the Alexa SDK from the Github page: [https://github.com/espressif/esp-va-sdk](https://github.com/espressif/esp-va-sdk).

3. Debugging Tool
   Use serial monitor/console that suits your development environment at baud rate of 115200.

4. App for Provisioning
   In order to run Alexa you need to provision LyraTD-SYNA with Alexa credentials and network settings (Wi-Fi SSID and passphrase).

2.2. Hardware Preparation

- 1 x PC (Linux Operating System is recommended).
- 1 x ESP32-LyraTD-SYNA.
- 2 x Micro USB cables (one is for the USB power supply).
- 1 x Speaker or 1 x earphone.

⚠ Notice:
The GitHub repository uses Espressif’s wake-word engine (WWE) for processing the 'Alexa’ wake-word. This allows easy evaluations. For production use cases, please reach out to sales@espressif.com or your Synaptics sales representative to obtain an Amazon certified wake-word engine.
2.3. **Flashing the Firmware**

This document captures the process of flashing the firmware on Windows. Please refer to the [ESP-VA-SDK](https://github.com/ESP-VA-SDK) repository on Github for setup on other platforms.

### 2.3.1. Driver Installation

Connect the board to a PC with a Micro-USB cable and install the USB-to-UART driver.

### 2.3.2. Flashing ESP32

- In order to build examples of esp-va-sdk, please follow the instructions mentioned on the [GitHub page](https).
- Once you build the Alexa firmware, you will generate three artifacts: `bootloader.bin`, `partitions.bin` and `alexa.bin`.
- For Flash Download Tool users, follow the instructions given below.
  1. Run Flash Download Tool, and click on "**ESP32 Download Tool**" at the interface. See Figure 2-1 above.
  2. Then you will see the interface shown in Figure 2-2 below.
3. Select the binary files (mentioned in table below) and set appropriate address in the tool as shown in Figure 2-3.

<table>
<thead>
<tr>
<th>Binary Files</th>
<th>Address</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootloader.bin</td>
<td>0x1000</td>
<td>basic configuration</td>
</tr>
<tr>
<td>partitions.bin</td>
<td>0x8000</td>
<td>basic configuration</td>
</tr>
<tr>
<td>alexa.bin</td>
<td>0x10000</td>
<td>audio application</td>
</tr>
</tbody>
</table>
2. Configuring for AVS

4. The SPI Download configuration on the ESP32 Download Tool is shown in Figure 2-3. Select “80 MHz” for “SPI SPEED”; select “DIO” for “SPI MODE”; and select “128 Mbit” for “FLASH SIZE”.

5. Select the COM port in line with the one used by the PC; select “1152000” as a baud rate.

6. Click the “START” button on the ESP32 Flash Download Tool to start downloading the firmware.

7. Wait for the download to finish. See Figure 2-4.
2. Configuring for AVS

2.4. Network Configuration

2.4.1. Wi-Fi Networking

1. After successfully downloading the firmware, power on the board again by pressing the EN button.

2. To configure the network for the first time:
   - Turn on the bluetooth in your phone. Open Espressif’s Alexa programming app and click on **Provision New Device**. Make sure your phone has internet connectivity.

   ![Provision New Device](image)

   **Figure 2-5. Provision New Device**

   - The provisioning happens over BLE (Bluetooth Low Energy). Android mandates applications to have Location permission for accessing BLE. Please provide the permission when the pop-up shows up.
   - You will see the list of available devices that needs to be provisioned, namely **ESP-Alexa-WXYZ**. Select the device that you wish to provision.
Next step is to login to your amazon account.

After successful login and authorization, you will be shown a list of Wi-Fi networks in the vicinity. Choose the network that you wish the device to connect to. Once
selected, enter the passphrase of that Wi-Fi network and click on the *provision* button.

![Available Wi-Fi networks](image)

**Figure 2-8. Available Wi-Fi networks**

![Provision](image)

**Figure 2-9. Enter your passphrase**

- On successfully connecting to the Wi-Fi network, after provisioning, the DSP and Alexa will be initialized, and ready to take voice commands.
2.5. Interactive Function

2.5.1. Voice Recognition

- Once all initialization are done, the device is ready. You can either use “PLAY” button on the board (Tap-To-Talk) or say "Alexa" to start a conversation. For Tap-to-Talk, press and release the button and speak.

- You can now ask any command like:
  - Tell me a joke.
  - How is the weather?
  - Will it rain today?
  - Sing a song.
  - Play Tuneln radio.
  - Set volume level to 7.

2.5.2. Buttons

- The “PLAY” button can be used as tap-to-talk. The same button can also be used to disable an Alarm/Timer.

- The “Vol+” and “Vol-” buttons can be used to adjust the volume of the sound. Press them repeatedly until you reach the desired sound volume.

- The "Mute" button can be used to mute/unmute the device.

- To reset to factory settings, press "Vol+" and "Vol-" button together for about 10 seconds.
A. Appendix - Schematics
6-Physical-Buttons:

Connector for LED & Button & MIC (Reserved):

0.6V MIC MUTE
1.8V
2.42V
1.2V VOL+
VOL-
PLAY/PAUSE

I2C_SCL:IO23
I2C_SDA:IO18

Button Array

MUTE_ON_OFF:IO27

Sensor Voltage:

VDD33
GND
VCC
LED_VCC
CX_MICBIAS1
ExtFFC_MIC_INP1
ExtFFC_MIC_INN1
ExtFFC_MIC_INP2
ExtFFC_MIC_INN2
CX_GND
Sensor Voltage

1,6-

Title
Size
Document Number
Rev
Date:
Sheet
of
Title
Size
Document Number
Rev
Date:
Sheet
of
Title
Size
Document Number
Rev
Date:
Sheet
of
Power for CX20921:
From CX20921 datasheet P18.
Power consumption max is 3.3x49mA = 161.7mW.
Doing this will minimize the GND bounce in the DC-DC converter area.

Critical Layout Note:
C146 negative terminal and C150 negative terminal connecting to PGND should both be placed very close to pin 6 of the CX20921 device.
From CX20921 datasheet P18.
The PGND-GND 50-mil tie connection should be close to the C146/C150/Pin_6 junction.

DCDC/DIGITAL/MIC GROUNDS

Short MGND to DGND directly with a trace.

Place L16, C149, C150 close to CX20921 device.

Note: Include resistor ladder and capacitor as shown in all designs.

Note: VDDO_1 and VDDO_2 should connect directly to +3.3V or +1.8V

Create PGND plane, separate from normal GND (Digital Ground) plane for internal DCDC.

Tie the PGND to Digital Ground planes using 50-mil trace.

Do not use a resistor or ferrite between the grounds.

Note: Include +1.0V Test Point DCDC as shown in all designs.