2.4 GHz Wi-Fi (802.11 b/g/n) module
Built around ESP32-S2 series of SoC (chip revision 0), Xtensa® single-core 32-bit LX7 microprocessor
Flash up to 16 MB, 2 MB PSRAM
37 GPIOs, rich set of peripherals
On-board PCB antenna or external antenna connector.
Module Overview

Note:

Check the link or the QR code to make sure that you use the latest version of this document:

1.1 Features

CPU and On-Chip Memory
- ESP32-S2 embedded, Xtensa® single-core 32-bit LX7 microprocessor, up to 240 MHz
- 128 KB ROM
- 320 KB SRAM
- 16 KB SRAM in RTC

Wi-Fi
- 802.11 b/g/n
- Bit rate: 802.11n up to 150 Mbps
- A-MPDU and A-MSDU aggregation
- 0.4 µs guard interval support
- Operating frequency: 2412 ~ 2484 MHz

Peripherals
- GPIO, SPI, LCD, UART, I2C, I2S, Camera interface, IR, pulse counter, LED PWM, TWAI® (compatible with ISO 11898-1, i.e. CAN Specification 2.0), full-speed USB OTG, ADC, DAC, touch sensor, temperature sensor

Integrated Components on Module
- 40 MHz crystal oscillator
- 4 MB SPI flash
- 2 MB PSRAM

Antenna Options
- On-board PCB antenna (ESP32-S2-WROVER)
- External antenna via a connector (ESP32-S2-WROVER-I)

Operating Conditions
- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating ambient temperature: −40 ~ 85 °C

Certification
- RF certification: See certificates for ESP32-S2-WROVER and ESP32-S2-WROVER-I
- Green certification: RoHS/REACH

Test
- HTOL/HTSL/uHAST/TCT/ESD

1.2 Description

ESP32-S2-WROVER and ESP32-S2-WROVER-I are two powerful, generic Wi-Fi MCU modules that have a rich set of peripherals. They are an ideal choice for a wide variety of application scenarios related to Internet of Things (IoT), such as embedded systems, smart home, wearable electronics, etc.

ESP32-S2-WROVER comes with a PCB antenna (ANT). ESP32-S2-WROVER-I comes with a connector for an external antenna (CONN).
They both feature a 4 MB external SPI flash and an additional 2 MB SPI Pseudo static RAM (PSRAM). The information in this datasheet is applicable to both modules.

The ordering information for the two modules is as follows:

<table>
<thead>
<tr>
<th>Module</th>
<th>Chip Embedded</th>
<th>Flash</th>
<th>PSRAM</th>
<th>Module Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP32-S2-WPROVER (ANT)</td>
<td>ESP32-S2</td>
<td>4 MB</td>
<td>2 MB</td>
<td>18.0 × 31.0 × 3.3</td>
</tr>
<tr>
<td>ESP32-S2-WPROVER-I (CONN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 These modules can be shipped with different flash sizes.

At the core of the modules is ESP32-S2 *, an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. You can power off the CPU and make use of the low-power co-processor to constantly monitor the peripherals for changes or crossing of thresholds.

ESP32-S2 integrates a rich set of peripherals including SPI, I2S, UART, I2C, LED PWM, TWAI® controller, ADC, DAC, touch sensor, temperature sensor, as well as up to 43 GPIOs. It also includes a full-speed USB OTG (OTG) interface to enable USB communication.

Note:
* For more information on ESP32-S2, please refer to [ESP32-S2 SeriesDatasheet](#).

1.3 Applications

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices
- USB Devices
- Speech Recognition
- Image Recognition
- Mesh Network
- Home Automation
- Smart Home Control Panel
- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications
- Health Care Applications
- Wi-Fi-enabled Toys
- Wearable Electronics
- Retail & Catering Applications
- Smart POS Machines
Contents

1 Module Overview 2
 1.1 Features 2
 1.2 Description 2
 1.3 Applications 3

2 Block Diagram 7

3 Pin Definitions 8
 3.1 Pin Layout 8
 3.2 Pin Description 9
 3.3 Strapping Pins 10

4 Electrical Characteristics 12
 4.1 Absolute Maximum Ratings 12
 4.2 Recommended Operating Conditions 12
 4.3 DC Characteristics (3.3 V, 25 °C) 12
 4.4 Current Consumption Characteristics 13
 4.5 Wi-Fi RF Characteristics 14
 4.5.1 Wi-Fi RF Standards 14
 4.5.2 Transmitter Characteristics 14
 4.5.3 Receiver Characteristics 15

5 Module Schematics 17

6 Peripheral Schematics 19

7 Physical Dimensions and PCB Land Pattern 20
 7.1 Physical Dimensions 20
 7.2 Recommended PCB Land Pattern 21
 7.3 Dimensions of External Antenna Connector 22

8 Product Handling 23
 8.1 Storage Conditions 23
 8.2 Electrostatic Discharge (ESD) 23
 8.3 Reflow Profile 23

9 MAC Addresses and eFuse 24

10 Related Documentation and Resources 25

Revision History 26
List of Tables

<table>
<thead>
<tr>
<th></th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ordering Information</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Pin Definitions</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Strapping Pins</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Absolute Maximum Ratings</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Recommended Operating Conditions</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>DC Characteristics (3.3 V, 25 °C)</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Current Consumption Depending on RF Modes</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Current Consumption in Modem-sleep Mode</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Current Consumption in Low-Power Modes</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Wi-Fi RF Standards</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>TX Power Characteristics</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>RX Sensitivity</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>Maximum RX Level</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>Adjacent Channel Rejection</td>
<td>16</td>
</tr>
</tbody>
</table>
List of Figures

1. ESP32-S2-WROVER Block Diagram 7
2. ESP32-S2-WROVER-I Block Diagram 7
3. Pin Layout (Top View) 8
4. ESP32-S2-WROVER Schematics 17
5. ESP32-S2-WROVER-I Schematics 18
6. Peripheral Schematics 19
7. Physical Dimensions 20
8. Recommended PCB Land Pattern 21
9. Dimensions of External Antenna Connector 22
10. Reflow Profile 23
2 Block Diagram

Figure 1: ESP32-S2-WROVER Block Diagram

Figure 2: ESP32-S2-WROVER-I Block Diagram
3 Pin Definitions

3.1 Pin Layout

The pin diagram below shows the approximate location of pins on the module. For the actual diagram drawn to scale, please refer to Figure 7.1 Physical Dimensions.

![Pin Layout Diagram](image_url)
3.2 Pin Description

The module has 42 pins. See pin definitions in Table 2.

For peripheral pin configurations, please refer to *ESP32-S2 Series Datasheet*.

Table 2: Pin Definitions

<table>
<thead>
<tr>
<th>Name</th>
<th>No.</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>1</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>3V3</td>
<td>2</td>
<td>P</td>
<td>Power supply</td>
</tr>
<tr>
<td>IO0</td>
<td>3</td>
<td>I/O/T</td>
<td>RTC_GPIO0, GPIO0</td>
</tr>
<tr>
<td>IO1</td>
<td>4</td>
<td>I/O/T</td>
<td>RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0</td>
</tr>
<tr>
<td>IO2</td>
<td>5</td>
<td>I/O/T</td>
<td>RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1</td>
</tr>
<tr>
<td>IO3</td>
<td>6</td>
<td>I/O/T</td>
<td>RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2</td>
</tr>
<tr>
<td>IO4</td>
<td>7</td>
<td>I/O/T</td>
<td>RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3</td>
</tr>
<tr>
<td>IO5</td>
<td>8</td>
<td>I/O/T</td>
<td>RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4</td>
</tr>
<tr>
<td>IO6</td>
<td>9</td>
<td>I/O/T</td>
<td>RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5</td>
</tr>
<tr>
<td>IO7</td>
<td>10</td>
<td>I/O/T</td>
<td>RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6</td>
</tr>
<tr>
<td>IO8</td>
<td>11</td>
<td>I/O/T</td>
<td>RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7</td>
</tr>
<tr>
<td>IO9</td>
<td>12</td>
<td>I/O/T</td>
<td>RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD</td>
</tr>
<tr>
<td>IO10</td>
<td>13</td>
<td>I/O/T</td>
<td>RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPII04</td>
</tr>
<tr>
<td>IO11</td>
<td>14</td>
<td>I/O/T</td>
<td>RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPII05</td>
</tr>
<tr>
<td>IO12</td>
<td>15</td>
<td>I/O/T</td>
<td>RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPII06</td>
</tr>
<tr>
<td>IO13</td>
<td>16</td>
<td>I/O/T</td>
<td>RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPII07</td>
</tr>
<tr>
<td>IO14</td>
<td>17</td>
<td>I/O/T</td>
<td>RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS</td>
</tr>
<tr>
<td>IO15</td>
<td>18</td>
<td>I/O/T</td>
<td>RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P</td>
</tr>
<tr>
<td>IO16</td>
<td>19</td>
<td>I/O/T</td>
<td>RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N</td>
</tr>
<tr>
<td>IO17</td>
<td>20</td>
<td>I/O/T</td>
<td>RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6, DAC_1</td>
</tr>
<tr>
<td>IO18</td>
<td>21</td>
<td>I/O/T</td>
<td>RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, DAC_2, CLK_OUT3</td>
</tr>
<tr>
<td>IO19</td>
<td>22</td>
<td>I/O/T</td>
<td>RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-</td>
</tr>
<tr>
<td>IO20</td>
<td>23</td>
<td>I/O/T</td>
<td>RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+</td>
</tr>
<tr>
<td>IO21</td>
<td>24</td>
<td>I/O/T</td>
<td>RTC_GPIO21, GPIO21</td>
</tr>
<tr>
<td>IO26</td>
<td>25</td>
<td>I/O/T</td>
<td>SPICS1, GPIO26</td>
</tr>
<tr>
<td>GND</td>
<td>26</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>IO33</td>
<td>27</td>
<td>I/O/T</td>
<td>SPIIO4, GPIO33, FSPIHD</td>
</tr>
<tr>
<td>IO34</td>
<td>28</td>
<td>I/O/T</td>
<td>SPIIO5, GPIO34, FSPICS0</td>
</tr>
<tr>
<td>IO35</td>
<td>29</td>
<td>I/O/T</td>
<td>SPIIO6, GPIO35, FSPID</td>
</tr>
<tr>
<td>IO36</td>
<td>30</td>
<td>I/O/T</td>
<td>SPIIO7, GPIO36, FSPICLK</td>
</tr>
<tr>
<td>IO37</td>
<td>31</td>
<td>I/O/T</td>
<td>SPIDQS, GPIO37, FSPIQ</td>
</tr>
<tr>
<td>IO38</td>
<td>32</td>
<td>I/O/T</td>
<td>GPIO38, FSPIWP</td>
</tr>
<tr>
<td>IO39</td>
<td>33</td>
<td>I/O/T</td>
<td>MTCK, GPIO39, CLK_OUT3</td>
</tr>
<tr>
<td>IO40</td>
<td>34</td>
<td>I/O/T</td>
<td>MTDO, GPIO40, CLK_OUT2</td>
</tr>
<tr>
<td>IO41</td>
<td>35</td>
<td>I/O/T</td>
<td>MTDI, GPIO41, CLK_OUT1</td>
</tr>
<tr>
<td>IO42</td>
<td>36</td>
<td>I/O/T</td>
<td>MTMS, GPIO42</td>
</tr>
<tr>
<td>TXD0</td>
<td>37</td>
<td>I/O/T</td>
<td>U0TXD, GPIO43, CLK_OUT1</td>
</tr>
</tbody>
</table>

Cont’d on next page
Table 2 – cont’d from previous page

<table>
<thead>
<tr>
<th>Name</th>
<th>No.</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXD0</td>
<td>38</td>
<td>I/O/T</td>
<td>U0RXD, GPIO44, CLK_OUT2</td>
</tr>
<tr>
<td>IO45</td>
<td>39</td>
<td>I/O/T</td>
<td>GPIO45</td>
</tr>
<tr>
<td>IO46</td>
<td>40</td>
<td>I</td>
<td>GPIO46</td>
</tr>
<tr>
<td>EN</td>
<td>41</td>
<td>I</td>
<td>High: on, enables the chip.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low: off, the chip powers off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: Do not leave the EN pin floating.</td>
</tr>
<tr>
<td>GND</td>
<td>42</td>
<td>P</td>
<td>Ground</td>
</tr>
</tbody>
</table>

1 P: power supply; I: input; O: output; T: high impedance.
2 By default, IO26 is connected to the CS pin of the PSRAM and cannot be used for other functions.

3.3 Strapping Pins

Note:
The content below is excerpted from Section Strapping Pins in ESP32-S2 Series Datasheet. For the strapping pin mapping between the chip and modules, please refer to Chapter 5 Module Schematics.

ESP32-S2 has three strapping pins:
- GPIO0
- GPIO45
- GPIO46

Software can read the values of corresponding bits from register "GPIO_STRAPPING".

During the chip's system reset (power-on-reset, RTC watchdog reset, brownout reset, analog super watchdog reset, and crystal clock glitch detection reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

GPIO0, GPIO45 and GPIO46 are connected to the chip’s internal weak pull-up/pull-down during the chip reset. Consequently, if they are unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of these strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU’s GPIOs to control the voltage level of these pins when powering on ESP32-S2.

After reset, the strapping pins work as normal-function pins.

Refer to Table 3 for a detailed boot-mode configuration of the strapping pins.

Table 3: Strapping Pins

<table>
<thead>
<tr>
<th>Pin</th>
<th>Default</th>
<th>SPI Boot</th>
<th>Download Boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD_SPI Voltage 1 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO45</td>
<td>Pull-down</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Booting Mode 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIO00</td>
<td>Pull-up</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Pin Definitions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Default</th>
<th>Enabled</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIO46</td>
<td>Pull-down</td>
<td>See note 5</td>
<td>See note 5</td>
</tr>
</tbody>
</table>

Note:

1. The functionality of strapping pin GPIO45 to select VDD_SPI voltage may be disabled by setting VDD_SPI_FORCE eFuse to 1. In such a case the voltage is selected with eFuse bit VDD_SPI_TIEH.

2. Since ESP32-S2FH2, ESP32-S2FH4, ESP32-S2FN4R2, and ESP32-S2R2 come with both/either 3.3 V SPI flash and/or PSRAM, VDD_SPI must be configured to 3.3 V.

3. The strapping combination of GPIO46 = 1 and GPIO0 = 0 is invalid and will trigger unexpected behavior.

4. ROM code can be printed over U0TXD (by default) or DAC_1, depending on the eFuse bit.

5. When eFuse UART_PRINT_CONTROL value is:
 - 0, print is normal during boot and not controlled by GPIO46.
 - 1 and GPIO46 is 0, print is normal during boot; but if GPIO46 is 1, print is disabled.
 - 2 and GPIO46 is 0, print is disabled; but if GPIO46 is 1, print is normal.
 - 3, print is disabled and not controlled by GPIO46.
4 Electrical Characteristics

4.1 Absolute Maximum Ratings

Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 4: Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD33</td>
<td>Power supply voltage</td>
<td>–0.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>TSTORE</td>
<td>Storage temperature</td>
<td>–40</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

4.2 Recommended Operating Conditions

Table 5: Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD33</td>
<td>Power supply voltage</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>I_{VDD}</td>
<td>Current delivered by external power supply</td>
<td>0.5</td>
<td>—</td>
<td>—</td>
<td>A</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating ambient temperature</td>
<td>–40</td>
<td>—</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

4.3 DC Characteristics (3.3 V, 25 °C)

Table 6: DC Characteristics (3.3 V, 25 °C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Pin capacitance</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>High-level input voltage</td>
<td>0.75 × VDD¹</td>
<td>—</td>
<td>VDD¹+ 0.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low-level input voltage</td>
<td>–0.3</td>
<td>—</td>
<td>0.25 × VDD¹</td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>High-level input current</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Low-level input current</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>nA</td>
</tr>
<tr>
<td>V_{OH}²</td>
<td>High-level output voltage</td>
<td>0.8 × VDD¹</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}²</td>
<td>Low-level output voltage</td>
<td>—</td>
<td>—</td>
<td>0.1 × VDD¹</td>
<td>V</td>
</tr>
<tr>
<td>I_{OH}</td>
<td>High-level source current (VDD¹ = 3.3 V, V_{OH} >= 2.64 V, PAD_DRIVER = 3)</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Low-level sink current (VDD¹ = 3.3 V, V_{OL} = 0.495 V, PAD_DRIVER = 3)</td>
<td>—</td>
<td>28</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>R_{PU}</td>
<td>Pull-up resistor</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{PD}</td>
<td>Pull-down resistor</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>kΩ</td>
</tr>
<tr>
<td>V_{IH,RST}</td>
<td>Chip reset release voltage</td>
<td>0.75 × VDD¹</td>
<td>—</td>
<td>VDD¹+ 0.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL,RST}</td>
<td>Chip reset voltage</td>
<td>–0.3</td>
<td>—</td>
<td>0.25 × VDD¹</td>
<td>V</td>
</tr>
</tbody>
</table>

¹ VDD is the I/O voltage for pins of a particular power domain.
² V_{OH} and V_{OL} are measured using high-impedance load.

Not Recommended For New Designs (NRND)
4.4 Current Consumption Characteristics

Owing to the use of advanced power-management technologies, the module can switch between different power modes. For details on different power modes, please refer to Section RTC and Low-Power Management in ESP32-S2 Series Datasheet.

Table 7: Current Consumption Depending on RF Modes

<table>
<thead>
<tr>
<th>Work mode</th>
<th>Description</th>
<th>Peak (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active (RF working) TX</td>
<td>802.11b, 20 MHz, 1 Mbps, @19.5 dBm</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>802.11g, 20 MHz, 54 Mbps, @15 dBm</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>802.11n, 20 MHz, MCS7, @13.5 dBm</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>802.11n, 40 MHz, MCS7, @13.5 dBm</td>
<td>160</td>
</tr>
<tr>
<td>RX 2</td>
<td>802.11b/g/n, 20 MHz</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>802.11n, 40 MHz</td>
<td>68</td>
</tr>
</tbody>
</table>

1 The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters’ measurements are based on 100% duty cycle.
2 The current consumption figures in RX mode are for cases where the peripherals are disabled and the CPU idle.

Note: The content below is excerpted from Section Power Consumption in Other Modes in ESP32-S2 Series Datasheet.

The measurements below are applicable to ESP32-S2, ESP32-S2FH2, and ESP32-S2FH4. Since ESP32-S2FN4R2 and ESP32-S2R2 are embedded with PSRAM, their current consumption might be higher.

Table 8: Current Consumption in Modem-sleep Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>CPU Frequency (MHz)</th>
<th>Description</th>
<th>All Peripherals Clocks Disabled (mA)</th>
<th>All Peripherals Clocks Enabled (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modem-sleep 2, 3</td>
<td>240</td>
<td>CPU is idle</td>
<td>20.0</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPU is running</td>
<td>23.0</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>CPU is idle</td>
<td>14.0</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPU is running</td>
<td>16.0</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>CPU is idle</td>
<td>10.5</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPU is running</td>
<td>12.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

1 In practice, the current consumption might be different depending on which peripherals are enabled.
2 In Modem sleep mode, Wi-Fi is clock gated.
3 In Modem-sleep mode, the consumption might be higher when accessing flash. For a flash rated at 80 Mbit/s, in SPI 2-line mode the consumption is 10 mA.
Table 9: Current Consumption in Low-Power Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Typ (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-sleep</td>
<td>VDD_SPI and Wi-Fi are powered down, and all GPIOs are high-impedance</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Note: The ULP co-processor is powered on²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 9: Current Consumption in Low-Power Modes</td>
<td></td>
</tr>
<tr>
<td>Deep-sleep</td>
<td>ULP sensor-monitored pattern³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTC timer + RTC memory</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>RTC timer only</td>
<td>25</td>
</tr>
<tr>
<td>Power off</td>
<td>CHIP PU is set to low level, the chip is powered off</td>
<td>1</td>
</tr>
</tbody>
</table>

1. In Light-sleep mode, with all related SPI pins pulled up, the current consumption of the embedded PSRAM is 140 µA. Chip variants with embedded PSRAM include ESP32-S2FN4R2 and ESP32-S2R2.
2. During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I2C are able to operate.
3. The "ULP sensor-monitored pattern" refers to the mode where the ULP coprocessor or the sensor works periodically. When touch sensors work with a duty cycle of 1%, the typical current consumption is 22 µA.

4.5 Wi-Fi RF Characteristics

4.5.1 Wi-Fi RF Standards

Table 10: Wi-Fi RF Standards

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center frequency range</td>
<td>2412 ~ 2484 MHz</td>
</tr>
<tr>
<td>Wi-Fi wireless standard</td>
<td>IEEE 802.11b/g/n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MHz</td>
<td>802.11b: 1, 2, 5.5 and 11 Mbps</td>
</tr>
<tr>
<td></td>
<td>802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps</td>
</tr>
<tr>
<td></td>
<td>802.11n: MCS0-7, 72.2 Mbps (Max)</td>
</tr>
<tr>
<td>40 MHz</td>
<td>802.11n: MCS0-7, 150 Mbps (Max)</td>
</tr>
</tbody>
</table>

1. Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.
2. For the modules that use external antenna connectors, the output impedance is 50 Ω. For other modules without external antenna connectors, the output impedance is irrelevant.

4.5.2 Transmitter Characteristics

Target TX power is configurable based on device or certification requirements. The default characteristics are provided in Table 11.
4 Electrical Characteristics

Table 11: TX Power Characteristics

<table>
<thead>
<tr>
<th>Rate</th>
<th>Min (dBm)</th>
<th>Typ (dBm)</th>
<th>Max (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b, 1 Mbps</td>
<td>—</td>
<td>19.5</td>
<td>—</td>
</tr>
<tr>
<td>802.11b, 11 Mbps</td>
<td>—</td>
<td>19.5</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 6 Mbps</td>
<td>—</td>
<td>18.0</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 54 Mbps</td>
<td>—</td>
<td>15.0</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS0</td>
<td>—</td>
<td>18.0</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS7</td>
<td>—</td>
<td>13.5</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS0</td>
<td>—</td>
<td>18.0</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS7</td>
<td>—</td>
<td>13.5</td>
<td>—</td>
</tr>
</tbody>
</table>

4.5.3 Receiver Characteristics

Table 12: RX Sensitivity

<table>
<thead>
<tr>
<th>Rate</th>
<th>Min (dBm)</th>
<th>Typ (dBm)</th>
<th>Max (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b, 1 Mbps</td>
<td>—</td>
<td>–97</td>
<td>—</td>
</tr>
<tr>
<td>802.11b, 2 Mbps</td>
<td>—</td>
<td>–95</td>
<td>—</td>
</tr>
<tr>
<td>802.11b, 5.5 Mbps</td>
<td>—</td>
<td>–93</td>
<td>—</td>
</tr>
<tr>
<td>802.11b, 11 Mbps</td>
<td>—</td>
<td>–88</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 6 Mbps</td>
<td>—</td>
<td>–92</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 9 Mbps</td>
<td>—</td>
<td>–91</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 12 Mbps</td>
<td>—</td>
<td>–89</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 18 Mbps</td>
<td>—</td>
<td>–86</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 24 Mbps</td>
<td>—</td>
<td>–83</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 36 Mbps</td>
<td>—</td>
<td>–80</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 48 Mbps</td>
<td>—</td>
<td>–76</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 54 Mbps</td>
<td>—</td>
<td>–74</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS0</td>
<td>—</td>
<td>–92</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS1</td>
<td>—</td>
<td>–88</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS2</td>
<td>—</td>
<td>–85</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS3</td>
<td>—</td>
<td>–82</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS4</td>
<td>—</td>
<td>–79</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS5</td>
<td>—</td>
<td>–75</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS6</td>
<td>—</td>
<td>–73</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS7</td>
<td>—</td>
<td>–72</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS0</td>
<td>—</td>
<td>–89</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS1</td>
<td>—</td>
<td>–85</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS2</td>
<td>—</td>
<td>–83</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS3</td>
<td>—</td>
<td>–79</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS4</td>
<td>—</td>
<td>–76</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS5</td>
<td>—</td>
<td>–72</td>
<td>—</td>
</tr>
</tbody>
</table>

Cont’d on next page
Table 12 – cont’d from previous page

<table>
<thead>
<tr>
<th>Rate</th>
<th>Min (dBm)</th>
<th>Typ (dBm)</th>
<th>Max (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11n, HT40, MCS6</td>
<td>—</td>
<td>–70</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS7</td>
<td>—</td>
<td>–68</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 13: Maximum RX Level

<table>
<thead>
<tr>
<th>Rate</th>
<th>Min (dBm)</th>
<th>Typ (dBm)</th>
<th>Max (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b, 1 Mbps</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>802.11b, 11 Mbps</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 6 Mbps</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 54 Mbps</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS0</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS7</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS0</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS7</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 14: Adjacent Channel Rejection

<table>
<thead>
<tr>
<th>Rate</th>
<th>Min (dB)</th>
<th>Typ (dB)</th>
<th>Max (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b, 11 Mbps</td>
<td>—</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 6 Mbps</td>
<td>—</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>802.11g, 54 Mbps</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS0</td>
<td>—</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT20, MCS7</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS0</td>
<td>—</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>802.11n, HT40, MCS7</td>
<td>—</td>
<td>8</td>
<td>—</td>
</tr>
</tbody>
</table>
5 Module Schematics
This is the reference design of the module.

Figure 4: ESP32-S2-WROVER Schematics
Figure 5: ESP32-S2-WROVER-I Schematics
6 Peripheral Schematics

This is the typical application circuit of the module connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).

- Soldering the EPAD to the ground of the base board is not a must, however, it can optimize thermal performance. If you choose to solder it, please apply the correct amount of soldering paste.

- To ensure that the power supply to the ESP32-S2 chip is stable during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually $R = 10\, \text{k}\Omega$ and $C = 1\, \mu\text{F}$. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For ESP32-S2’s power-up and reset sequence timing diagram, please refer to Section Power Scheme in ESP32-S2 Series Datasheet.

- GPIO18 works as U1RXD and is in floating state when the chip is powered on, which may affect the chip’s entry into download boot mode. To solve this issue, add an external pull-up resistor.

Figure 6: Peripheral Schematics
7 Physical Dimensions and PCB Land Pattern

7.1 Physical Dimensions

Figure 7: Physical Dimensions

Note:
For information about tape, reel, and product marking, please refer to Espressif Module Package Information.
7.2 Recommended PCB Land Pattern

![Recommended PCB Land Pattern Diagram]

Figure 8: Recommended PCB Land Pattern

- **Unit**: mm
- **Via for thermal pad**: ○
- **Copper**: □

Espressif Systems

Not Recommended For New Designs (NRND)
7.3 Dimensions of External Antenna Connector

ESP32-S2-WROVER-I uses the first generation external antenna connector as shown in Figure 9. This connector is compatible with the following connectors:

- U.FL Series connector from Hirose
- MHF I connector from I-PEX
- AMC connector from Amphenol

![Figure 9: Dimensions of External Antenna Connector](image-url)
8 Product Handling

8.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and /90%RH. The module is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the module must be soldered within 168 hours with the factory conditions 25±5 °C and /60%RH. If the above conditions are not met, the module needs to be baked.

8.2 Electrostatic Discharge (ESD)

- Human body model (HBM): ±2000 V
- Charged-device model (CDM): ±500 V
- Air discharge: ±6000 V
- Contact discharge: ±4000 V

8.3 Reflow Profile

Solder the module in a single reflow.

Figure 10: Reflow Profile
9 MAC Addresses and eFuse

The eFuse in ESP32-S2 family of chips has been burnt into 48-bit mac_address. The actual addresses the chip uses in station or AP modes correspond to mac_address in the following way:

- Station mode: mac_address
- AP mode: mac_address + 1

There are seven blocks in eFuse for users to use. Each block is 256 bits in size and has independent write/read disable controller. Six of them can be used to store encrypted key or user data, and the remaining one is only used to store user data.
10 Related Documentation and Resources

Related Documentation

- **ESP32-S2 Series Datasheet** – Specifications of the ESP32-S2 hardware.
- **ESP32-S2 Technical Reference Manual** – Detailed information on how to use the ESP32-S2 memory and peripherals.
- **ESP32-S2 Hardware Design Guidelines** – Guidelines on how to integrate the ESP32-S2 into your hardware product.
- **Certificates**
- **ESP32-S2 Product/Process Change Notifications (PCN)**
- **ESP32-S2 Advisories** – Information on security, bugs, compatibility, component reliability.
- **Documentation Updates and Update Notification Subscription**

Developer Zone

- **ESP-IDF** and other development frameworks on GitHub.
 https://github.com/espressif
- **ESP32 BBS Forum** – Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.
 https://esp32.com/
- **The ESP Journal** – Best Practices, Articles, and Notes from Espressif folks.
 https://blog.espressif.com/
- **See the tabs** SDKs and Demos, Apps, Tools, AT Firmware.

Products

- **ESP32-S2 Series SoCs** – Browse through all ESP32-S2 SoCs.
- **ESP32-S2 Series Modules** – Browse through all ESP32-S2-based modules.
- **ESP32-S2 Series DevKits** – Browse through all ESP32-S2-based devkits.
- **ESP Product Selector** – Find an Espressif hardware product suitable for your needs by comparing or applying filters.

Contact Us

- **See the tabs** Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples (Online stores), Become Our Supplier, Comments & Suggestions.
 https://espressif.com/en/contact-us/sales-questions
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Release notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022-03-01</td>
<td>v1.2</td>
<td>• Added module introduction and pictures on the title page</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added NRND watermark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added a note with a link and QR code to the latest version of the document</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Section “Learning Resources” and renamed to “Related Documentation and Resources”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Table 8 and Table 9</td>
</tr>
<tr>
<td>2020-12-17</td>
<td>v1.1</td>
<td>• Added TWAI to Chapter 1 Module Overview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Table 7 Current Consumption Depending on RF Modes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated the capacitance value of RC delay circuit to 1 µF in Chapter 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peripheral Schematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated note in Section 8.3 Reflow Profile</td>
</tr>
<tr>
<td>2020-06-01</td>
<td>v1.0</td>
<td>Official release</td>
</tr>
<tr>
<td>2020-03-10</td>
<td>v0.5</td>
<td>Preliminary release</td>
</tr>
</tbody>
</table>

Submit Documentation Feedback

Not Recommended For New Designs (NRND)